Predicting energy intake in adults who are dieting and exercising

Martin CK, Gilmore LA, Apolzan JW, Myers CA, Thomas DM, Redman LM. Smartloss: a personalized mobile health intervention for weight management and health promotion. JMIR Mhealth Uhealth. 2016;4:e18.

Article  Google Scholar 

Martin CK, Miller AC, Thomas DM, Champagne CM, Han H, Church T. Efficacy of SmartLoss, a smartphone-based weight loss intervention: results from a randomized controlled trial. Obesity (Silver Spring). 2015;23:935–42.

Article  Google Scholar 

Hall KD, Chow CC. Estimating changes in free-living energy intake and its confidence interval. Am J Clin Nutr. 2011;94:66–74.

CAS  Article  Google Scholar 

Thomas DM, Gonzalez MC, Pereira AZ, Redman LM, Heymsfield SB. Time to correctly predict the amount of weight loss with dieting. J Acad Nutr Diet. 2014;114:857–61.

Article  Google Scholar 

Schoeller DA, Thomas D, Archer E, Heymsfield SB, Blair SN, Goran MI, et al. Self-report-based estimates of energy intake offer an inadequate basis for scientific conclusions. Am J Clin Nutr. 2013;97:1413–5.

CAS  Article  Google Scholar 

Lichtman SW, Pisarska K, Berman ER, Pestone M, Dowling H, Offenbacher E, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327:1893–8.

CAS  Article  Google Scholar 

Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sorensen TI, et al. Energy balance measurement: when something is not better than nothing. Int J Obes (Lond). 2015;39:1109–13.

CAS  Article  Google Scholar 

Thomas DM, Schoeller DA, Redman LA, Martin CK, Levine JA, Heymsfield SB. A computational model to determine energy intake during weight loss. Am J Clin Nutr. 2010;92:1326–31.

CAS  Article  Google Scholar 

Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129:S102–38.

Article  Google Scholar 

Lay DC, Lay SR, McDonald J. Linear algebra and its applications, Sixth edition. edn Pearson: Boston, 2020.

Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE, Redman LM, et al. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes Rev. 2012;13:835–47.

CAS  Article  Google Scholar 

Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. The Cochrane database of systematic reviews. 2006;4:Cd003817.

Google Scholar 

Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.

Article  Google Scholar 

Catenacci VA, Wyatt HR. The role of physical activity in producing and maintaining weight loss. Nature clinical practice. Endocrinology & metabolism. 2007;3:518–29.

Article  Google Scholar 

Antonetti VW. The equations governing weight change in human beings. Am J Clin Nutr. 1973;26:64–71.

CAS  Article  Google Scholar 

Racette SB, Rochon J, Uhrich ML, Villareal DT, Das SK, Fontana L, et al. Effects of two years of calorie restriction on aerobic capacity and muscle strength. Med Sci Sports Exerc. 2017;49:2240–9.

Article  Google Scholar 

Rickman AD, Williamson DA, Martin CK, Gilhooly CH, Stein RI, Bales CW, et al. The CALERIE Study: design and methods of an innovative 25% caloric restriction intervention. Contemporary clinical trials. 2011;32:874–81.

Article  Google Scholar 

Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295:1539–48.

CAS  Article  Google Scholar 

Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–7.

CAS  Article  Google Scholar 

Schoeller DA, Westerterp-Plantenga MS. Advances in the assessment of dietary intake, CRC Press, Taylor & Francis Group: Boca Raton, 2017.

Stewart TM, Bhapkar M, Das S, Galan K, Martin CK, McAdams L, et al. Comprehensive assessment of long-term effects of reducing intake of energy phase 2 (CALERIE Phase 2) screening and recruitment: methods and results. Contemp Clin Trials. 2013;34:10–20.

CAS  Article  Google Scholar 

Gilmore LA, Ravussin E, Bray GA, Han H, Redman LM. An objective estimate of energy intake during weight gain using the intake-balance method. Am J Clin Nutr. 2014;100:806–12.

CAS  Article  Google Scholar 

Redman LM, Huffman KM, Landerman LR, Pieper CF, Bain JR, Muehlbauer MJ, et al. Effect of caloric restriction with and without exercise on metabolic intermediates in nonobese men and women. The Journal of Clinical Endocrinology & Metabolism. 2011;96:E312–E321.

CAS  Article  Google Scholar 

Plucker A, Thomas DM, Broskey N, Martin CK, Schoeller D, Shook R, et al. Adult energy requirements predicted from doubly labeled water. Int J Obes (Lond). 2018;42:1515–23.

Article  Google Scholar 

Silva AM, Matias CN, Santos DA, Thomas D, Bosy-Westphal A, Müller MJ, et al. Energy balance over one athletic season. Med Sci Sports Exerc. 2017;49:1724–33.

Article  Google Scholar 

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

CAS  Article  Google Scholar 

Thomas DM, Martin CK, Heymsfield S, Redman LM, Schoeller DA, Levine JA. A simple model predicting individual weight change in humans. J Biol Dyn. 2011;5:579–99.

Article  Google Scholar 

Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378:826–37.

Article  Google Scholar 

Sazonov E, Schuckers S, Lopez-Meyer P, Makeyev O, Sazonova N, Melanson EL, et al. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior. Physiol Meas. 2008;29:525–41.

Article  Google Scholar 

Alex J, Turner D, Thomas DM, McDougall A, Halawani MW, Heymsfield SB, et al. Bite count rates in free-living individuals: new insights from a portable sensor. BMC nutrition. 2018;4:23.

Article  Google Scholar 

Services USDoHaH. Physical Activity Guidelines for Americans. In: Services DoHaH, (ed). 2nd Edition ed. Washington, DC, U.S., 2018.

Martin CK, Johnson WD, Myers CA, Apolzan JW, Earnest CP, Thomas DM, et al. Effect of different doses of supervised exercise on food intake, metabolism, and non-exercise physical activity: The E-MECHANIC randomized controlled trial. Am J Clin Nutr. 2019;110:583–92.

Article  Google Scholar 

Martin CK, Han H, Coulon SM, Allen HR, Champagne CM, Anton SD. A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method. Br J Nutr. 2009;101:446–56.

CAS  Article  Google Scholar 

Sanghvi A, Redman LM, Martin CK, Ravussin E, Hall KD. Validation of an inexpensive and accurate mathematical method to measure long-term changes in free-living energy intake. Am J of Clin Nutr. 2015;102:353–8.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif