Therapeutic siRNA: State-of-the-Art and Future Perspectives

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

CAS  PubMed  Article  Google Scholar 

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

CAS  PubMed  Article  Google Scholar 

Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15:2654–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

CAS  PubMed  Article  Google Scholar 

Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol. 2005;12:340–9.

CAS  PubMed  Article  Google Scholar 

Wittrup A, Ai A, Liu X, Hamar P, Trifonova R, Charisse K, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol. 2015;33:870–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nature Rev Drug Disc. 2019;18:421–46.

CAS  Article  Google Scholar 

Dixon SJ, Stockwell BR. Identifying druggable disease-modifying gene products. Curr Opin Chem Biol. 2009;13:549–55.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sullenger BA, Nair S. From the RNA world to the clinic. Science. 2016;352:1417–20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

CAS  PubMed  Article  Google Scholar 

Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev. 2018;34:153–80.

CAS  PubMed  Article  Google Scholar 

Friedrich M, Wiedemann K, Reiche K, Puppel SH, Pfeifer G, Zipfel I, et al. The role of lncRNAs TAPIR-1 and -2 as diagnostic markers and potential therapeutic targets in prostate cancer. Cancers (Basel). 2020;12:1122.

CAS  PubMed Central  Article  Google Scholar 

Wilson JA, Richardson CD. Future promise of siRNA and other nucleic acid based therapeutics for the treatment of chronic HCV. Infect Disord Drug Targets. 2006;6:43–56.

CAS  PubMed  Article  Google Scholar 

DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107:8800–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A. 2004;101:8682–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med. 2005;11:944–51.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76:2840–54.

CAS  PubMed  Article  Google Scholar 

Idris A, Davis A, Supramaniam A, Acharya D, Kelly G, Tayyar Y, et al. A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Mol Ther. 2021;29:2219–26.

Article  CAS  Google Scholar 

Saify Nabiabad H, Amini M, Demirdas S. Specific delivering of RNAi using Spike’s aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: a strong anti-Covid drug in a clinical case study. Chem Biol Drug Des. 2022;99:233–46.

CAS  PubMed  Article  Google Scholar 

Chang YC, Yang CF, Chen YF, Yang CC, Chou YL, Chou HW, et al. A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant. EMBO Mol Med. 2022;14(4):e15298.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Friedrich M, Pfeifer G, Binder S, Aigner A, Vollmer Barbosa P, Makert GR, et al. Selection and validation of siRNAs preventing uptake and replication of SARS-CoV-2. Front Bioeng Biotechnol. 2022;10: 801870.

PubMed  PubMed Central  Article  Google Scholar 

Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–88.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A. 2002;99:6047–52.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002;20:500–5.

CAS  PubMed  Article  Google Scholar 

Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23:73–82.

CAS  PubMed  Article  Google Scholar 

Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–405.

CAS  PubMed  Article  Google Scholar 

Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5:101.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20:537–51.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Puthenveetil S, Whitby L, Ren J, Kelnar K, Krebs JF, Beal PA. Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification. Nucleic Acids Res. 2006;34:4900–11.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426:1246–64.

CAS  PubMed  Article  Google Scholar 

Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun. 2004;316:1050–8.

CAS  PubMed  Article  Google Scholar 

Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res. 2008;36:7100–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Safari F, Rahmani Barouji S, Tamaddon AM. Strategies for improving siRNA-induced gene silencing efficiency. Adv Pharm Bull. 2017;7:603–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2:2068–78.

CAS  PubMed  Article  Google Scholar 

Jagla B, Aulner N, Kelly PD, Song D, Volchuk A, Zatorski A, et al. Sequence characteristics of functional siRNAs. RNA. 2005;11:864–72.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30.

CAS  PubMed  Article  Google Scholar 

Tafer H. Bioinformatics of siRNA design. Methods Mol Biol. 2014;1097:477–90.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif