Association of rare PPARGC1A variants with Parkinson’s disease risk

Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435–50.

CAS  Article  Google Scholar 

Piccinin E, Sardanelli AM, Seibel P, Moschetta A, Cocco T, Villani G. PGC-1s in the spotlight with Parkinson’s disease. Int J Mol Sci. 2021;22:3487.

CAS  Article  Google Scholar 

Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91:795–808.

Article  Google Scholar 

Homayoun H. Parkinson disease. Ann Intern Med. 2018;169:Itc33-itc48.

Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

CAS  Article  Google Scholar 

Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20:385–97.

CAS  Article  Google Scholar 

Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

CAS  Article  Google Scholar 

Martínez-Redondo V, Pettersson AT, Ruas JL. The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia. 2015;58:1969–77.

Article  Google Scholar 

Vernier M, Giguère V. Aging, senescence and mitochondria: the PGC-1/ERR axis. J Mol Endocrinol. 2021;66:R1–14.

CAS  Article  Google Scholar 

Nitz I, Ewert A, Klapper M, Döring F. Analysis of PGC-1α variants Gly482Ser and Thr612Met concerning their PPARγ2-coactivation function. Biochem Biophys Res Commun. 2007;353:481–6.

CAS  Article  Google Scholar 

Jiang H, Kang S-U, Zhang S, Karuppagounder S, Xu J, Lee Y-K, et al. Adult conditional knockout of PGC-1α leads to loss of dopamine neurons. eNeuro. 2016;3:ENEURO.0183-16.2016.

Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider BL. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet. 2012;21:1861–76.

CAS  Article  Google Scholar 

Peng K, Yang L, Wang J, Ye F, Dan G, Zhao Y, et al. The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol. 2017;54:3783–97.

CAS  Article  Google Scholar 

Martínez-Redondo V, Jannig PR, Correia JC, Ferreira DMS, Cervenka I, Lindvall JM, et al. Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J Biol Chem. 2016;291:15169–84.

Article  Google Scholar 

Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, et al. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol. 2015;77:15–32.

CAS  Article  Google Scholar 

Soyal SM, Zara G, Ferger B, Felder TK, Kwik M, Nofziger C, et al. The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson’s Disease. Neurobiol Dis. 2019;121:34–46.

CAS  Article  Google Scholar 

Yang XD, Qian YW, Xu SQ, Wan DY, Sun FH, Chen SD, et al. Expression of the gene coading for PGC-1α in peripheral blood leukocytes and related gene variants in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2018;51:30–5.

Article  Google Scholar 

Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. NFE2L2, PPARGC1α, and pesticides and Parkinson’s disease risk and progression. Mechanisms Ageing Dev. 2018;173:1–8.

CAS  Article  Google Scholar 

Clark J, Reddy S, Zheng K, Betensky RA, Simon DK. Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson’s disease. BMC Med Genet. 2011;12:69–69.

CAS  Article  Google Scholar 

Yang X, Xu S, Qian Y, He X, Chen S, Xiao Q. Hypermethylation of the gene coding for PGC-1α in peripheral blood leukocytes of patients with Parkinson’s disease. Front Neurosci. 2020;14:97.

Article  Google Scholar 

Shi CH, Cheng Y, Tang MB, Liu YT, Yang ZH, Li F, et al. Analysis of single nucleotide polymorphisms of STK32B, PPARGC1A and CTNNA3 gene with sporadic parkinson’s disease susceptibility in Chinese Han population. Front Neurol. 2018;9:387.

Article  Google Scholar 

Yang X, Xu S, Qian Y, He X, Chen S, Xiao Q. Hypermethylation of the gene coding for PGC-1α in peripheral blood leukocytes of patients with Parkinson’s disease. Front Neurosci. 2020;14:97.

Article  Google Scholar 

Zhang Y, Zhao Y, Zhou X, Yi M, Li K, Zhou X, et al. Relationship between GWAS-linked three new loci in Essential tremor and risk of Parkinson’s disease in Chinese population. Parkinsonism Relat Disord. 2017;43:124–6.

CAS  Article  Google Scholar 

Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.

Article  Google Scholar 

Guo JF, Zhang L, Li K, Mei JP, Xue J, Chen J, et al. Coding mutations in NUS1 contribute to Parkinson’s disease. Proc Natl Acad Sci USA. 2018;115:11567–72.

CAS  Article  Google Scholar 

Liu H, Wang Y, Pan H, Xu K, Jiang L, Zhao Y, et al. Association of rare heterozygous PLA2G6 variants with the risk of Parkinson’s disease. Neurobiol Aging. 2021;101:297.e5–97.e8.

CAS  Article  Google Scholar 

Pan HX, Zhao YW, Mei JP, Fang ZH, Wang Y, Zhou X, et al. GCH1 variants contribute to the risk and earlier age-at-onset of Parkinson’s disease: a two-cohort case-control study. Transl Neurodegener. 2020;9:31.

CAS  Article  Google Scholar 

Zhao YW, Pan HX, Liu Z, Wang Y, Zeng Q, Fang ZH, et al. The association between lysosomal storage disorder genes and Parkinson’s disease: a large cohort study in Chinese mainland population. Front Aging Neurosci. 2021;13:749109.

Article  Google Scholar 

Zhao Y, Qin L, Pan H, Liu Z, Jiang L, He Y, et al. The role of genetics in Parkinson’s disease: a large cohort study in Chinese mainland population. Brain 2020;143:2220–34.

Article  Google Scholar 

Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018;46:7793–804.

CAS  Article  Google Scholar 

Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85.

CAS  Article  Google Scholar 

Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genom. 2013;14(Suppl 3):S3.

Article  Google Scholar 

Huang X, Zhao Y, Pan H, Wang Y, Liu Z, Xu Q, et al. The association between LIN28A gene rare variants and Parkinson’s disease in Chinese population. Gene. 2022;829:146515.

CAS  Article  Google Scholar 

Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M, Cai F, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet. 2017;49:1511–6.

CAS  Article  Google Scholar 

Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson’s disease. Cell Tissue Res. 2018;373:9–20.

CAS  Article  Google Scholar 

Gureev AP, Popov VN. Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res. 2019;44:2273–9.

CAS  Article  Google Scholar 

Shi C-H, Cheng Y, Tang M-B, Liu Y-T, Yang Z-H, Li F, et al. Analysis of single nucleotide polymorphisms of STK32B, PPARGC1A and CTNNA3 gene with sporadic parkinson’s disease susceptibility in Chinese Han population. Front Neurol. 2018;9:387–7.

Article  Google Scholar 

Müller SH, Girard SL, Hopfner F, Merner ND, Bourassa CV, Lorenz D, et al. Genome-wide association study in essential tremor identifies three new loci. Brain 2016;139:3163–9.

Article  Google Scholar 

Jo A, Lee Y, Kam TI, Kang SU, Neifert S, Karuppagounder SS, et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci Transl Med. 2021;13.

Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010;2:52ra73.

Article  Google Scholar 

Chen Y, Jiang Y, Yang Y, Huang X, Sun C. SIRT1 Protects Dopaminergic Neurons in Parkinson’s Disease Models via PGC-1α-Mediated Mitochondrial Biogenesis. Neurotox Res. 2021;39:1393–404.

CAS  Article  Google Scholar 

Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 2011;144:689–702.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif