Determination of the Number of Tissue Groups of Kinetically Distinct Transit Time in Whole-Body Physiologically Based Pharmacokinetic (PBPK) Models II: Practical Application of Tissue Lumping Theories for Pharmacokinetics of Various Compounds

Levy G, Gibaldi M, Jusko WJ. Multicompartment pharmacokinetic models and pharmacologic effects. J Pharm Sci. 1969;58(4):422–4.

CAS  Article  Google Scholar 

Benet LZ. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics. J Pharm Sci. 1972;61(4):536–41.

CAS  Article  Google Scholar 

Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2012;39(6):711–23. https://doi.org/10.1007/s10928-012-9280-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.

CAS  Article  Google Scholar 

Riegelman S, Loo J, Rowland M. Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit properties of a single compartment. J Pharm Sci. 1968;57(1):117–23.

CAS  Article  Google Scholar 

Hirtz J. The fate of drugs in the organism. A bibliographic survey complied by the Societe´ Fran¸aise des Sciences et Techniques Pharmaceutique, Working group under the chairmanship of HIRTZ. Dekker New York; 1974.

Segre G. Pharmacokinetics—compartmental representation. Pharmacol Ther. 1982;17(1):111–27.

CAS  Article  Google Scholar 

Vaughan D, Dennis M. Number of exponential terms describing the solution of an N-compartmental mammillary model: Vanishing exponentials. J Pharmacokinet Biopharm. 1979;7(5):511–25.

CAS  Article  Google Scholar 

Wagner JG. Linear pharmacokinetic models and vanishing exponential terms: Implications in pharmacokinetics. J Pharmacokinet Biopharm. 1976;4(5):395–425.

CAS  Article  Google Scholar 

Jeong Y-S, Kim M-S, Chung S-J. Determination of the number of tissue groups of kinetically distinct transit time in whole-body physiologically-based pharmacokinetic (PBPK) models I: Theoretical consideration of bottom-up approach of lumping tissues in whole-body PBPK. AAPS J. 2022. https://doi.org/10.1208/s12248-022-00732-y.

Article  Google Scholar 

Lobell M, Sivarajah V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol Diversity. 2003;7(1):69–87.

CAS  Article  Google Scholar 

Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp® population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23.

CAS  Article  Google Scholar 

Colclough N, Ruston L, Wood JM, MacFaul PA. Species differences in drug plasma protein binding. Med Chem Commun. 2014;5(7):963–7.

CAS  Article  Google Scholar 

Uchimura T, Kato M, Saito T, Kinoshita H. Prediction of human blood-to-plasma drug concentration ratio. Biopharm Drug Dispos. 2010;31(5-6):286–97. https://doi.org/10.1002/bdd.711.

CAS  Article  PubMed  Google Scholar 

Kerns EH, Di L, Petusky S, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci. 2004;93(6):1440–53.

CAS  Article  Google Scholar 

Fujikawa M, Ano R, Nakao K, Shimizu R, Akamatsu M. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem. 2005;13(15):4721–32. https://doi.org/10.1016/j.bmc.2005.04.076.

CAS  Article  PubMed  Google Scholar 

Jeong Y-S, Yim C-S, Ryu H-M, Noh C-K, Song Y-K, Chung S-J. Estimation of the minimum permeability coefficient in rats for perfusion-limited tissue distribution in whole-body physiologically-based pharmacokinetics. Eur J Pharm Biopharm. 2017;115:1–17.

CAS  Article  Google Scholar 

Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. https://doi.org/10.1002/jps.20322.

CAS  Article  PubMed  Google Scholar 

Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57. https://doi.org/10.1002/jps.20502.

CAS  Article  PubMed  Google Scholar 

Øie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci. 1979;68(9):1203–5.

Article  Google Scholar 

Brown R, Delp M, Lindstedt S, Rhomberg L, Beliles R. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13407:407–84.

Article  Google Scholar 

Nestorov IA, Aarons LJ, Arundel PA, Rowland M. Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokinet Biopharm. 1998;26(1):21–46.

CAS  Article  Google Scholar 

Veng-Pedersen P, Gillespie WR. Single pass mean residence time in peripheral tissues: a distribution parameter intrinsic to the tissue affinity of a drug. J Pharm Sci. 1986;75(12):1119–26.

CAS  Article  Google Scholar 

Pilari S, Huisinga W. Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models. J Pharmacokinet Pharmacodyn. 2010;37(4):365–405.

CAS  Article  Google Scholar 

Gueorguieva I, Nestorov IA, Rowland M. Reducing whole body physiologically based pharmacokinetic models using global sensitivity analysis: diazepam case study. J Pharmacokinet Pharmacodyn. 2006;33(1):1–27.

CAS  Article  Google Scholar 

Björkman S. Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn. 2003;30(4):285–307.

Article  Google Scholar 

Brochot C, Tóth J, Bois FY. Lumping in pharmacokinetics. J Pharmacokinet Pharmacodyn. 2005;32(5-6):719–36.

Article  Google Scholar 

Jeong Y-S, Jusko WJ. Meta-assessment of metformin absorption and disposition pharmacokinetics in nine species. Pharmaceuticals. 2021;14(6):545.

CAS  Article  Google Scholar 

Kong AN, Jusko WJ. Definitions and applications of mean transit and residence times in reference to the two-compartment mammillary plasma clearance model. J Pharm Sci. 1988;77(2):157–65.

CAS  Article  Google Scholar 

Berezhkovskiy LM. Prediction of drug terminal half-life and terminal volume of distribution after intravenous dosing based on drug clearance, steady-state volume of distribution, and physiological parameters of the body. J Pharm Sci. 2013;102(2):761–71.

CAS  Article  Google Scholar 

Fleishaker JC, Smith RB. Compartmental model analysis in pharmacokinetics. J Clin Pharmacol. 1987;27(12):922–6.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif