Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice

Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, Fernandez E, Galecki A, Garvey WT, Jayarathne H, Kumar N, Javors MA, Ladiges WC, Macchiarini F, Nelson J, Reifsnyder P, Rosenthal NA, Sadagurski M, Salmon AB, Smith DL Jr, Snyder JM, Lombard DB, Strong R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020;5(21):e140019. https://doi.org/10.1172/jci.insight.140019.

Article  PubMed Central  Google Scholar 

Jojima T, Wakamatsu S, Kase M, Iijima T, Maejima Y, Shimomura K, Kogai T, Tomaru T, Usui I, Aso Y. The SGLT2 inhibitor canagliflozin prevents carcinogenesis in a mouse model of diabetes and non-alcoholic steatohepatitis-related hepatocarcinogenesis: association with SGLT2 expression in hepatocellular carcinoma. Int J Mol Sci. 2019;20(20):5237. https://doi.org/10.3390/ijms20205237.

CAS  Article  PubMed Central  Google Scholar 

Shiba K, Tsuchiya K, Komiya C, Miyachi Y, Mori K, Shimazu N, Yamaguchi S, Ogasawara N, Katoh M, Itoh M, Suganami T, Ogawa Y. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep. 2018;8(1):2362. https://doi.org/10.1038/s41598-018-19658-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu D, Zhou Y, Xie X, He L, Ding J, Pang S, Shen B, Zhou C. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter1 and lactate dehydrogenase A. Int J Oncol. 2020;57:1223–33. https://doi.org/10.3892/ijo.2020.5120.

CAS  Article  PubMed  Google Scholar 

Woods TC, Satou R, Miyata K, Katsurada A, Dugas CM, Klingenberg NC, Fonseca VA, Navar LG. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus. Am J Nephrol. 2019;49:331–42. https://doi.org/10.1159/000499597.

CAS  Article  PubMed  Google Scholar 

Abdelrahman AM, Al Suleimani Y, Shalaby A, Ashique M, Manoj P, Nemmar A, Ali BH. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol. 2019;392:45–53. https://doi.org/10.1007/s00210-018-1564-7.

CAS  Article  PubMed  Google Scholar 

Sun P, Wang Y, Ding Y, Luo J, Zhong J, Xu N, Zhang Y, Xie W. Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1alpha pathway. iScience. 2021;24:102521. https://doi.org/10.1016/j.isci.2021.102521.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lin F, Song C, Zeng Y, Li Y, Li H, Liu B, Dai M, Pan P. Canagliflozin alleviates LPS-induced acute lung injury by modulating alveolar macrophage polarization. Int Immunopharmacol. 2020;88:106969. https://doi.org/10.1016/j.intimp.2020.106969.

CAS  Article  PubMed  Google Scholar 

Xu C, Wang W, Zhong J, Lei F, Xu N, Zhang Y, Xie W. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem Pharmacol. 2018;152:45–59. https://doi.org/10.1016/j.bcp.2018.03.013.

CAS  Article  PubMed  Google Scholar 

De Jonghe S, Proctor J, Vinken P, Feyen B, Wynant I, Marien D, Geys H, Mamidi RN, Johnson MD. Carcinogenicity in rats of the SGLT2 inhibitor canagliflozin. Chem Biol Interact. 2014;224:1–12. https://doi.org/10.1016/j.cbi.2014.09.018.

CAS  Article  PubMed  Google Scholar 

Korfhage J, Skinner ME, Basu J, Greenson JK, Miller RA, Lombard DB. Canagliflozin increases intestinal adenoma burden in female ApcMin/+ mice. J Gerontol A Biol Sci Med Sci. 2022;77:215–20. https://doi.org/10.1093/gerona/glab254.

Article  PubMed  Google Scholar 

Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA. Acarbose, 17- alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13:273–82. https://doi.org/10.1111/acel.12170.

CAS  Article  PubMed  Google Scholar 

Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, Flurkey K, Garratt M, Gelfond JAL, Javors MA, Levi M, Lithgow GJ, Macchiarini F, Nelson JF, Sukoff Rizzo SJ, Slaga TJ, Stearns T, Wilkinson JE, Miller RA. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell. 2019;18:e12898. https://doi.org/10.1111/acel.12898.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell. 2013;12:712–8. https://doi.org/10.1111/acel.12496.

CAS  Article  PubMed  Google Scholar 

Miller RA, Chrisp C. T cell subset patterns that predict resistance to spontaneous lymphoma, mammary adenocarcinoma, and fibrosarcoma in mice. J Immunol. 2002;169:1619–25. https://doi.org/10.4049/jimmunol.169.3.1619.

CAS  Article  PubMed  Google Scholar 

Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, Hejtmancik JF, Nadon N, Strong R, Wood LK, Woodward MA, Miller RA. Rapamycin slows aging in mice. Aging Cell. 2012;11:675–82. https://doi.org/10.1111/j.1474-9726.2012.00832.x.

CAS  Article  PubMed  Google Scholar 

Snyder JM, Snider TA, Ciol MA, Wilkinson JE, Imai DM, Casey KM, Vilches-Moure JG, Pettan-Brewer C, Pillai SPS, Carrasco SE, Salimi S, Ladiges W. Validation of a geropathology grading system for aging mouse studies. Geroscience. 2019;41:455–65. https://doi.org/10.1007/s11357-019-00088-w.

Article  PubMed  PubMed Central  Google Scholar 

Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, de Magalhaes JP, Martinez PA, McCord JM, Miller BF, Muller M, Nelson JF, Ndukum J, Rainger GE, Richardson A, Sabatini DM, Salmon AB, Simpkins JW, Steegenga WT, Nadon NL, Harrison DE. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15:872–84. https://doi.org/10.1111/acel.12496.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, Javors MA, Li X, Nadon NL, Nelson JF, Pletcher S, Salmon AB, Sharp ZD, Van Roekel S, Winkleman L, Strong R. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014;13:468–77. https://doi.org/10.1111/acel.12194.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Snyder JM, Ward JM, Treuting PM. Cause-of-death analysis in rodent aging studies. Vet Pathol. 2016;53:233–43. https://doi.org/10.1177/0300985815610391.

CAS  Article  PubMed  Google Scholar 

Ikeno Y, Hubbard GB, Lee S, Dube SM, Flores LC, Roman MG, Bartke A. Do Ames dwarf and calorie-restricted mice share common effects on age-related pathology? Pathobiol Aging Age Relat Dis. 2013;3. https://doi.org/10.3402/pba.v3i0.20833.

Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA. 2001;98:6736–41. https://doi.org/10.1073/pnas.111158898.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jayarathne HSM, Debarba LK, Jaboro JJ, Ginsburg BC, Miller RA, Sadagurski M. Neuroprotective effects of canagliflozin: lessons from aged genetically diverse UM-HET3 mice. Aging Cell. 2022;21:e13653.

CAS  Article  Google Scholar 

Shen Z, Hinson A, Miller RA, Garcia GG. Cap-independent translation: a shared mechanism for lifespan extension by rapamycin, acarbose, and 17alpha-estradiol. Aging Cell. 2021;20:e13345. https://doi.org/10.1111/acel.13345.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wink L, Miller RA, Garcia GG. Rapamycin, acarbose and 17alpha-estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immun Ageing. 2022;19:8. https://doi.org/10.1186/s12979-022-00264-1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Herrera JJ, Louzon S, Pifer K, Leander D, Merrihew GE, Park JH, Szczesniak K, Whitson J, Wilkinson JE, Fiehn O, MacCoss MJ, Day SM, Miller RA, Garratt M. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight. 2020;5(21):e137474. https://doi.org/10.1172/jci.insight.137474.

Article  PubMed Central  Google Scholar 

Sadagurski M, Cady G, Miller RA. Anti-aging drugs reduce hypothalamic inflammation in a sex- specific manner. Aging Cell. 2017;16:652–60. https://doi.org/10.1111/acel.12590.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Treuting PM, Snyder JM, Ikeno Y, Schofield PN, Ward JM, Sundberg JP. The vital role of pathology in improving reproducibility and translational relevance of aging studies in rodents. Vet Pathol. 2016;53:244–9. https://doi.org/10.1177/0300985815620629.

CAS  Article  PubMed  PubMed Central  Google Scholar 

La Perle KMD. Comparative pathologists: ultimate control freaks seeking validation! Vet Pathol. 2019;56:19–23. https://doi.org/10.1177/0300985818806047.

Article  PubMed  Google Scholar 

Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF, Martin GM, Rabinovitch PS, Ladiges WC. Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci. 2008;63:813–22. https://doi.org/10.1093/gerona/63.8.813.

Article  PubMed  Google Scholar 

Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell. 2010;9:536–44. https://doi.org/10.1111/j.1474-9726.2010.00581.x.

CAS  Article  PubMed  Google Scholar 

Yumura W, Sugino N, Nagasawa R, Kubo S, Hirokawa K, Maruyama N. Age-associated changes in renal glomeruli of mice. Exp Gerontol. 1989;24:237–49. https://doi.org/10.1016/0531-5565(89)90015-6.

CAS  Article  PubMed  Google Scholar 

Roncal-Jimenez CA, Ishimoto T, Lanaspa MA, Milagres T, Hernando AA, Jensen T, Miyazaki M, Doke T, Hayasaki T, Nakagawa T, Marumaya S, Long DA, Garcia GE, Kuwabara M, Sanchez-Lozada LG, Kang DH, Johnson RJ. Aging-associated renal disease in mice is fructokinase dependent. Am J Physiol Renal Physiol. 2016;311:F722–30. https://doi.org/10.1152/ajprenal.00306.2016.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif