Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study

Depp CA, Harmell A, Vahia IV. Successful cognitive aging. In: Behavioral neurobiology of aging. 2011. pp. 35–50. https://doi.org/10.1007/7854_2011_158.

World Health Organization. Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization, Geneva, 2019. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/312180/9789241550543-eng.pdf?sequence=1&isAllowed=y. Accessed 16 May 2019

Cutler SJ. Worries about getting Alzheimer’s: who’s concerned? Am J Alzheimers Dis Other Demen. 2015;30(6):591–8. https://doi.org/10.1177/1533317514568889.

Article  PubMed  Google Scholar 

Hongisto K, et al. Quality of Life in relation to neuropsychiatric symptoms in Alzheimer’s disease: 5-year prospective ALSOVA cohort study. Int J Geriatr Psychiatry. 2018;33(1):47–57. https://doi.org/10.1002/gps.4666.

Article  PubMed  Google Scholar 

Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332–384. https://doi.org/10.1016/j.jalz.2015.02.003.

Barnett JH, Hachinski V, Blackwell AD. Cognitive health begins at conception: addressing dementia as a lifelong and preventable condition. BMC Med. 2013;11(1):246. https://doi.org/10.1186/1741-7015-11-246.

Article  PubMed  PubMed Central  Google Scholar 

Livingston G, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

Article  Google Scholar 

Smith GE, Bondi MW. Mild cognitive impairment and dementia: definitions, diagnosis, and treatment. Oxford, New York: Oxford University Press; 2013.

Google Scholar 

Zaninotto P, Batty GD, Allerhand M, Deary IJ. Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing. J Epidemiol Community Health. 2018;72(8):685–94. https://doi.org/10.1136/jech-2017-210116.

Article  PubMed  Google Scholar 

Chang M, et al. The effect of midlife physical activity on cognitive function among older adults: AGES—Reykjavik study. J Gerontol A Biol Sci Med Sci. 2010;65A(12):1369–74. https://doi.org/10.1093/gerona/glq152.

Article  PubMed Central  Google Scholar 

Cunningham C, O’Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand J Med Sci Sports. 2020;30(5):816–27. https://doi.org/10.1111/sms.13616.

Article  PubMed  Google Scholar 

Won H, Abdul Manaf Z, Mat Ludin AF, Shahar S. Wide range of body composition measures are associated with cognitive function in community-dwelling older adults. Geriatr Gerontol Int. 2017;17(4):554–60. https://doi.org/10.1111/ggi.12753.

Article  PubMed  Google Scholar 

Sindi S, et al. Sleep disturbances and dementia risk: a multicenter study. Alzheimers Dement. 2018;14(10):1235–42. https://doi.org/10.1016/j.jalz.2018.05.012.

Article  PubMed  Google Scholar 

Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep. 2017;19(3):24. https://doi.org/10.1007/s11906-017-0724-3.

Article  PubMed  PubMed Central  Google Scholar 

Feinkohl I, Price JF, Strachan MWJ, Frier BM. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res Ther. 2015;7(1):46. https://doi.org/10.1186/s13195-015-0130-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stefansdottir H, et al. Atrial fibrillation is associated with reduced brain volume and cognitive function independent of cerebral infarcts. Stroke. 2013;44(4):1020–5. https://doi.org/10.1161/STROKEAHA.12.679381.

Article  PubMed  PubMed Central  Google Scholar 

Abete P, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart–brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52. https://doi.org/10.1016/j.arr.2014.07.003.

Article  PubMed  Google Scholar 

Opdebeeck C, Martyr A, Clare L. Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Aging Neuropsychol Cogn. 2016;23(1):40–60. https://doi.org/10.1080/13825585.2015.1041450.

Article  Google Scholar 

Clare L, et al. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017;14(3): e1002259. https://doi.org/10.1371/journal.pmed.1002259.

Article  PubMed  PubMed Central  Google Scholar 

Saczynski JS, et al. White matter lesions and cognitive performance: the role of cognitively complex leisure activity. J Gerontol A Biol Sci Med Sci. 2008;63(8):848–54. https://doi.org/10.1093/gerona/63.8.848.

Article  PubMed  Google Scholar 

Antoniou M. The advantages of bilingualism debate. Annu Rev Linguist. 2019;5(1):395–415. https://doi.org/10.1146/annurev-linguistics-011718-011820.

Article  Google Scholar 

Weiss J, Puterman E, Prather AA, Ware EB, Rehkopf DH. A data-driven prospective study of dementia among older adults in the United States. PLoS ONE. 2020;15(10): e0239994. https://doi.org/10.1371/journal.pone.0239994.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Blankevoort CG, et al. Physical predictors of cognitive performance in healthy older adults: a cross-sectional analysis. PLoS One. 2013;8(7):e70799. https://doi.org/10.1371/journal.pone.0070799.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cooper R, et al. Objective measures of physical capability and subsequent health: a systematic review. Age Ageing. 2011;40(1):14–23. https://doi.org/10.1093/ageing/afq117.

Article  PubMed  Google Scholar 

Scheltens P, et al. Alzheimer’s disease. The Lancet. 2016;388(10043):505–17. https://doi.org/10.1016/S0140-6736(15)01124-1.

CAS  Article  Google Scholar 

Bangen KJ, et al. Baseline white matter hyperintensities and hippocampal volume are associated with conversion from normal cognition to mild cognitive impairment in the Framingham offspring study. Alzheimer Dis Assoc Disord. 2018;32(1):50–6. https://doi.org/10.1097/WAD.0000000000000215.

Article  PubMed  PubMed Central  Google Scholar 

Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE. 2013;8(6): e67346. https://doi.org/10.1371/journal.pone.0067346.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sigurdsson S, et al. Incidence of brain infarcts, cognitive change, and risk of dementia in the general population. Stroke. 2017;48(9):2353–60. https://doi.org/10.1161/STROKEAHA.117.017357.

Article  PubMed  PubMed Central  Google Scholar 

Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement: Transl Res Clin Interv. 2019;5:272–93. https://doi.org/10.1016/j.trci.2019.05.008.

Article  Google Scholar 

Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE. Cognition and neuropathology in aging: multidimensional perspectives from the rush religious orders study and rush memory and aging project. Curr Alzheimer Res. 2011;8(4):336–40.

CAS  Article  Google Scholar 

Ahmed RM, et al. Biomarkers in dementia: clinical utility and new directions. J Neurol Neurosurg Psychiatry. 2014;85(12):1426–34. https://doi.org/10.1136/jnnp-2014-307662.

CAS  Article  PubMed  Google Scholar 

Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70. https://doi.org/10.1111/ene.13439.

CAS  Article  PubMed  Google Scholar 

Veitch DP, et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement. 2019;15(1):106–52. https://doi.org/10.1016/j.jalz.2018.08.005.

Article  PubMed  Google Scholar 

Cabeza R, et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat Rev Neurosci. 2018;19(11):701–10. https://doi.org/10.1038/s41583-018-0068-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep. 2019;19(1):1–12. https://doi.org/10.1007/s11910-019-0917-z.

Article  PubMed  PubMed Central  Google Scholar 

Stern Y, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16(9):1305–11. https://doi.org/10.1016/j.jalz.2018.07.219.

Article  PubMed  Google Scholar 

Lee DH, et al. Effects of cognitive reserve in Alzheimer’s disease and cognitively unimpaired individuals. Front Aging Neurosci. 2021;13: 784054. https://doi.org/10.3389/fnagi.2021.784054.

Article  PubMed  Google Scholar 

Groot C, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2):e149–56. https://doi.org/10.1212/WNL.0000000000004802.

Article  PubMed  Google Scholar 

Harris TB, et al. Age, gene/environment susceptibility–reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115.

Article  PubMed  Google Scholar 

Vidal J-S, et al. Coronary artery calcium, brain function and structure: the AGES-Reykjavik study. Stroke. 2010;41(5):891–7. https://doi.org/10.1161/STROKEAHA.110.579581.

Article  PubMed  PubMed Central  Google Scholar 

Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test Manual - Adult Version (Research Edition). New York: The Psychological Corporation; 1987.

Google Scholar 

Wechsler DW. WAIS-III: Wechsler adult intelligence scale. Manual. New York: Psychological Corporation; 1955.

Google Scholar 

Salthouse TA, Babcock RL. Decomposing adult age differences in working memory. Dev Psychol. 1991;27(5):763–76.

Article  Google Scholar 

Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643–62. https://doi.org/10.1037/h0054651.

Article 

留言 (0)

沒有登入
gif