Tissue-specific reductions in mitochondrial efficiency and increased ROS release rates during ageing in zebra finches, Taeniopygia guttata

Arking R. Biology of longevity and aging: pathways and prospects. Oxford University Press; 2019.

Google Scholar 

Partridge L. The new biology of ageing. Philo Trans Royal Soc B: Biol Sci. 2010;365(1537):147–54. https://doi.org/10.1098/rstb.2009.0222.

Article  Google Scholar 

Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://doi.org/10.1093/geronj/11.3.298.

CAS  Article  PubMed  Google Scholar 

Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev. 2007;87(4):1175–213. https://doi.org/10.1152/physrev.00047.2006.

CAS  Article  PubMed  Google Scholar 

Selman C, Blount JD, Nussey DH, Speakman JR. Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol Evol. 2012;27(10):570–7. https://doi.org/10.1016/j.tree.2012.06.006.

Article  PubMed  Google Scholar 

Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Buffenstein R. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell. 2006;5(6):463–71. https://doi.org/10.1111/j.1474-9726.2006.00237.x.

CAS  Article  PubMed  Google Scholar 

Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Gems D. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008;22(23):3236–41. https://doi.org/10.1101/gad.504808.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yang W, Li J, Hekimi S. A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics. 2007;177(4):2063–74. https://doi.org/10.1534/genetics.107.080788.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Ikeno Y, Qi W, Chaudhuri A, Li Y, Bokov A, … Van Remmen H. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J Gerontol A Biol Sci Med Sci. 2009;64(12):1212–20. https://doi.org/10.1093/gerona/glp132.

VanRemmen H, Jones DP. Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci. 2009;64(2):171–4. https://doi.org/10.1093/gerona/gln058.

Speakman JR, Selman C. The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays. 2011;33(4):255–9. https://doi.org/10.1002/bies.201000132.

Article  PubMed  Google Scholar 

Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20:709–11. https://doi.org/10.1038/nm.3624.

CAS  Article  PubMed  Google Scholar 

Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TBL, ... Selman C. Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol. 2015;5(24):5745–57. https://doi.org/10.1002/ece3.1790.

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95. https://doi.org/10.1016/j.cell.2005.02.001.

CAS  Article  PubMed  Google Scholar 

Zhang Y, Wong HS. Are mitochondria the main contributor of reactive oxygen species in cells? J Exp Biol. 2021;224(Pt 5):jeb221606. https://doi.org/10.1242/jeb.221606

Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. https://doi.org/10.1146/annurev.bi.64.070195.000525.

CAS  Article  PubMed  Google Scholar 

Halliwell B, Gutteridge JM. Free radicals in biology and medicine. USA: Oxford University Press; 2015.

Book  Google Scholar 

Dawson NJ, Katzenback BA, Storey KB. Free-radical first responders the characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog Rana sylvatica. Biochim Biophys Acta. 2015;1850(1):97–106. https://doi.org/10.1016/j.bbagen.2014.10.003.

CAS  Article  PubMed  Google Scholar 

Weisiger RA, Fridovich I. Superoxide dismutase Organelle specificity. J Biol Chem. 1973;248(10):3582–92.

CAS  Article  Google Scholar 

Herrero A, Barja G. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev. 1997;98(2):95–111. https://doi.org/10.1016/S0047-6374(97)00076-6.

CAS  Article  PubMed  Google Scholar 

Ku HH, Sohal RS. Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev. 1993;72(1):67–76. https://doi.org/10.1016/0047-6374(93)90132-b.

CAS  Article  PubMed  Google Scholar 

Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Brand MD. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell. 2007;6(5):607–18. https://doi.org/10.1111/j.1474-9726.2007.00312.x.

CAS  Article  PubMed  Google Scholar 

Munro D, Pichaud N, Paquin F, Kemeid V, Blier PU. Low hydrogen peroxide production in mitochondria of the long-lived Arctica islandica: underlying mechanisms for slow aging. Aging Cell. 2013;12(4):584–92. https://doi.org/10.1111/acel.12082.

CAS  Article  PubMed  Google Scholar 

Tahara EB, Navarete FD, Kowaltowski AJ. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radical Biol Med. 2009;46(9):1283–97. https://doi.org/10.1016/j.freeradbiomed.2009.02.008.

CAS  Article  Google Scholar 

Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Leeuwenburgh C. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol-Reg Integ Comparative Physiol. 2003;284(2):R474-80. https://doi.org/10.1152/ajpregu.00455.2002.

CAS  Article  Google Scholar 

Monaghan P, Heidinger BJ, D’Alba L, Evans NP, Spencer KA. For better or worse: reduced adult lifespan following early-life stress is transmitted to breeding partners. Proc Royal Soc B: Biol Sci. 2012;279(1729):709–14. https://doi.org/10.1098/rspb.2011.1291.

Article  Google Scholar 

Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Environmental conditions shape the temporal pattern of investment in reproduction and survival. Proc Royal Soc B: Biol Sci. 2018;285(1870):20172442. https://doi.org/10.1098/rspb.2017.2442.

Article  Google Scholar 

Zann RA. The zebra finch: a synthesis of field and laboratory studies (Vol. 5). Oxford University Press; 1996.

Rønning B, Moe B, Berntsen HH, Noreen E, Bech C. Is the rate of metabolic ageing and survival determined by basal metabolic rate in the zebra finch? PLoS ONE. 2014;9(9):e108675. https://doi.org/10.1371/journal.pone.0108675.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Briga M, Jimeno B, Verhulst S. Coupling lifespan and aging? The age at onset of body mass decline associates positively with sex-specific lifespan but negatively with environment-specific lifespan. Exp Gerontol. 2019;119:111–9. https://doi.org/10.1016/j.exger.2019.01.030.

Article  PubMed  Google Scholar 

Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P. Telomere length in early life predicts lifespan. Proc Natl Acad Sci. 2012;109(5):1743–8. https://doi.org/10.1073/pnas.1113306109.

Article  PubMed  PubMed Central  Google Scholar 

Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118(12):1883–91. https://doi.org/10.1111/j.1600-0706.2009.17643.x.

Article  Google Scholar 

Salin K, Auer SK, Anderson GJ, Selman C, Metcalfe NB. Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity. J Exp Biol. 2016;219(9):1356–62. https://doi.org/10.1242/jeb.133025.

Article  PubMed  Google Scholar 

Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Mark W, Steurer W, Saks V, Usson Y, Margreiter R, Gnaiger E. Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol-Heart Circ Physiol. 2004;286(5):H1633-41. https://doi.org/10.1152/ajpheart.00701.2003.

CAS  Article  PubMed  Google Scholar 

Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590(14):3349–60. https://doi.org/10.1113/jphysiol.2012.230185.

Dawson NJ, Alza L, Nandal G, Scott GR, McCracken KG. Convergent changes in muscle metabolism depend on duration of high-altitude ancestry across Andean waterfowl. Elife. 2020;9:e56259. https://doi.org/10.7554/eLife.56259.

Lessells CM, Boag PT. Unrepeatable repeatabilities: a common mistake. Auk. 1987;104(1):116–21.

Article  Google Scholar 

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2018.

Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42. https://doi.org/10.1111/j.2041-210x.2012.00261.x.

Article  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kauppila TES, Kauppila JHK, Larsson N-G. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25(1):57–71. https://doi.org/10.1016/j.cmet.2016.09.017.

CAS  Article  PubMed  Google Scholar 

Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61(5):654–66. https://doi.org/10.1016/j.molcel.2016.01.028.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 2000;35(6–7):811–20. https://doi.org/10.1016/S0531-5565(00)00135-2.

CAS  Article  PubMed  Google Scholar 

Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. https://doi.org/10.1042/BJ20110162.

CAS  Article  PubMed  Google Scholar 

Guerville F, De Souto Barreto P, Ader I, Andrieu S, Casteilla L, Dray C, … Vellas B. Revisiting the hallmarks of aging to identify markers of biological age. J Prev Alzheimers Dis. 2020;7(1):56–64. https://doi.org/10.14283/jpad.2019.50

Alway SE, Mohamed JS, Myers MJ. Mitochondria initiate and regulate sarcopenia. Exerc Sport Sci Rev. 2017;45(2):58–69. https://doi.org/10.1249/JES.0000000000000101.

Article  PubMed

留言 (0)

沒有登入
gif