A metabolomic signature of the APOE2 allele

Ji Y, et al. Apolipoprotein Epsilon epsilon4 frequency is increased among Chinese patients with frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;36(3–4):163–70.

CAS  Article  Google Scholar 

Farrer LA, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis APOE and Alzheimer Disease Meta Analysis Consortium. Jama. 1997;278(16):1349–56.

CAS  Article  Google Scholar 

Corbo RM, R Scacchi, Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ʻthriftyʼ allele? Ann Hum Genet, 1999; 63(Pt 4) 301–10

Sebastiani P, et al. APOE alleles and extreme human longevity. J Gerontol A Biol Sci Med Sci. 2019;74(1):44–51.

CAS  Article  Google Scholar 

Sweigart B, et al. APOE E2/E2 is associated with slower rate of cognitive decline with age. J Alzheimers Dis, 2021.

Kim YJ, et al. Protective effects of APOE e2 against disease progression in subcortical vascular mild cognitive impairment patients: a three-year longitudinal study. Sci Rep. 2017;7(1):1910.

Article  Google Scholar 

Reiman EM, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11(1):667.

CAS  Article  Google Scholar 

Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiology of Disease. 2014;72:3–12.

CAS  Article  Google Scholar 

Wang T, et al. APOE epsilon2 resilience for Alzheimer’s disease is mediated by plasma lipid species: analysis of three independent cohort studies. Alzheimers Dement, 2022.

Liu Y, et al. Plasma lipidome is dysregulated in Alzheimer’s disease and is associated with disease risk genes. Transl Psychiatry. 2021;11(1):344.

Article  Google Scholar 

Hysi PG, et al. Metabolome genome-wide association study identifies 74 novel genomic regions influencing plasma metabolites levels. Metabolites. 2022;12(1):61.

CAS  Article  Google Scholar 

Sebastiani P, Perls TT. The genetics of extreme longevity: lessons from the New England Centenarian Study. Front Genet. 2012;3:277.

PubMed  PubMed Central  Google Scholar 

Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63(12):1416–9.

Article  Google Scholar 

Earls JC, et al. Multi-omic biological age estimation and its correlation with wellness and disease phenotypes: a longitudinal study of 3,558 individuals. J Gerontol A Biol Sci Med Sci. 2019;74(Suppl_1):S52-s60.

Article  Google Scholar 

Barzilai N, et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA. 2003;290(15):2030–40.

CAS  Article  Google Scholar 

Gubbi S, et al. Effect of exceptional parental longevity and lifestyle factors on prevalence of cardiovascular disease in offspring. Am J Cardiol. 2017;120(12):2170–5.

Article  Google Scholar 

Wojczynski MK, et al. NIA Long Life Family Study: objectives, design, and heritability of cross sectional and longitudinal phenotypes. J Gerontol A Biol Sci Med Sci, 2021.

Wilmanski T, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3(2):274–86.

Article  Google Scholar 

Sebastiani P, et al. A serum protein signature of APOE genotypes in centenarians. Aging Cell, 2019; e13023.

Fahy E, Subramaniam S. RefMet: a reference nomenclature for metabolomics. Nat Methods. 2020;17(12):1173–4.

CAS  Article  Google Scholar 

Wishart DS, et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2021;50(D1):D622–31.

Article  Google Scholar 

Tuck MK, et al. Standard operating procedures for serum and plasma collection: Early Detection Research Network Consensus Statement Standard Operating Procedure Integration Working Group. J Proteome Res. 2009;8(1):113–7.

CAS  Article  Google Scholar 

Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31(3):545–8.

CAS  Article  Google Scholar 

Koch W et al. TaqMan systems for genotyping of disease-related polymorphisms present in the gene encoding apolipoprotein E. 2002;40(11):1123-1131.

Yamaguchi Y, et al. Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore Longitudinal Study of Aging. Metabolomics. 2021;17(1):9.

CAS  Article  Google Scholar 

Mahieu NG, et al. Defining and detecting complex peak relationships in mass spectral data: the Mz unity Algorithm. Anal Chem. 2016;88(18):9037–46.

CAS  Article  Google Scholar 

Cho K, et al. Targeting unique biological signals on the fly to improve MS/MS coverage and identification efficiency in metabolomics. Anal Chim Acta. 2021;1149:338210.

CAS  Article  Google Scholar 

Stancliffe E, et al. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat Methods. 2021;18(7):779–87.

CAS  Article  Google Scholar 

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2006;8(1):118–27.

Article  Google Scholar 

Sumner LW, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3(3):211–21.

CAS  Article  Google Scholar 

Little, R.J.A. and D.B. Rubin, Statistical analysis with missing data. 1987: Wiley.

Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Statist Soc Series B. 1995;57(1):289–300.

Google Scholar 

Marron MM et al. Using lipid profiling to better characterize metabolic differences in apolipoprotein E (APOE) genotype among community-dwelling older Black men. Geroscience, 2021.

Proitsi P, et al. Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatry. 2015;5(1):e494–e494.

CAS  Article  Google Scholar 

Mundra PA et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight; 2018. 3(17).

Baloni P et al. Multi-omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer’s disease. medRxiv, 2021 2021.07.16.21260601.

Wood PL, et al. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer’s disease (LOAD). BBA clinical. 2015;5:25–8.

Article  Google Scholar 

Wood PL, et al. Targeted lipidomics of fontal cortex and plasma diacylglycerols (DAG) in mild cognitive impairment and Alzheimer’s disease: validation of DAG accumulation early in the pathophysiology of Alzheimer’s disease. Journal of Alzheimer’s disease : JAD. 2015;48(2):537–46.

CAS  Article  Google Scholar 

Wood PL, Cebak JE, Woltjer RL. Diacylglycerols as biomarkers of sustained immune activation in proteinopathies associated with dementia. Clinica Chimica Acta. 2018;476:107–10.

CAS  Article  Google Scholar 

Callender JA, Newton AC. Conventional protein kinase C in the brain: 40 years later. Neuronal signaling. 2017;1(2):NS0160005-NS20160005.

Article  Google Scholar 

Soto-Avellaneda A, Morrison BE. Signaling and other functions of lipids in autophagy: a review. Lipids Health Dis. 2020;19(1):214.

Article  Google Scholar 

Herrera JJ et al. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight, 2020; 5(21).

Sonowal R, et al. Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci. 2017;114(36):E7506–15.

CAS  Article  Google Scholar 

Masuo Y, et al. 6-Hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor elevated in renal failure patients. Drug Metab Pharmacokinet. 2020;35(6):555–62.

CAS  Article  Google Scholar 

Dekkers KF et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. medRxiv, 2021 2021.12.23.21268179.

Badal VD, et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients. 2020;12(12):3759.

Article  Google Scholar 

Zajac DJ, et al. APOE genetics influence murine gut microbiome. Sci Rep. 2022;12(1):1906.

CAS  Article  Google Scholar 

Crumeyrolle-Arias M, et al. Inhibition of brain mitochondrial monoamine oxidases by the endogenous compound 5-hydroxyoxindole. Biochem Pharmacol. 2004;67(5):977–9.

CAS  Article  Google Scholar 

Behl T et al. Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules, 2021; 26(12).

Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44.

CAS  Article  Google Scholar 

Wong MWK, et al. APOE genotype differentially modulates plasma lipids in healthy older individuals, with relevance to brain health. J Alzheimers Dis. 2019;72(3):703–16.

CAS  Article  Google Scholar 

Miranda AM, et al. Effects of APOE4 allelic dosage on lipidomic signatures in the entorhinal cortex of aged mice. Transl Psychiatry. 2022;12(1):129.

CAS  Article  Google Scholar 

Gurinovich A et al. Effect of longevity genetic variants on the molecular aging rate. Geroscience, 2021.

留言 (0)

沒有登入
gif