Synthesis of carbon nanotubes on activated carbon using a metal-free NaCl catalyst: a novel and green approach

Abdullah HB, Ramli I, Ismail I, Yusof NA (2017) Hydrocarbon sources for the carbon nanotubes production by chemical vapour deposition: a review. Pertanika J Sci Technol 25:379–396

Google Scholar 

Abdulrazzak FH, Alkiam AF, Hussein FH (2019) Behavior of X-ray analysis of carbon nanotubes. In: Saleh HE, El-Sheikh SMM (eds) Perspective of carbon nanotubes. IntechOpen. https://doi.org/10.5772/intechopen.77444

Chapter  Google Scholar 

Ainsley R, Hartlib LP, Holroyd PM, Long G (1974) The solubility of carbon in sodium. J Nucl Mater 52:255–276. https://doi.org/10.1016/0022-3115(74)90172-X

CAS  Article  Google Scholar 

Al Mamun A, AlSaadi MA, Alam MZ, Sopyan I (2018) Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate. Appl Nanosci 8:1767–1779. https://doi.org/10.1007/s13204-018-0861-2

CAS  Article  Google Scholar 

Alayan HM, Alsaadi MA, Das R et al (2018) The formation of hybrid carbon nanomaterial by chemical vapor deposition: an efficient adsorbent for enhanced removal of methylene blue from aqueous solution. Water Sci Technol 77:1714–1723. https://doi.org/10.2166/wst.2018.057

CAS  Article  Google Scholar 

Alayan HM, Alsaadi MA, AlOmar MK, Hashim MA (2019) Growth and optimization of carbon nanotubes in powder activated carbon for an efficient removal of methylene blue from aqueous solution. Environ Technol (united Kingdom) 40:2400–2415. https://doi.org/10.1080/09593330.2018.1441911

CAS  Article  Google Scholar 

Alayan HM, Aljumaily MM, Alsaadi MA, Hashim MA (2020) Probing the effect of gaseous hydrocarbon precursors on the adsorptive efficiency of synthesized carbon-based nanomaterials. J Eng Res 17:47–58. https://doi.org/10.24200/tjer.vol17iss1pp47-58

Article  Google Scholar 

Algharibi A, Mjalli FS, Abu Tarboush B, Al Saadi M (2022) The effect of chemical activation method in the preparation of activated carbon from local phoenix dactylifera waste stems. Mater Sci Forum 1059:145–155. https://doi.org/10.4028/p-bi24c2

Article  Google Scholar 

Aljumaily MM, Alsaadi MA, Das R et al (2018) Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Sci Rep. https://doi.org/10.1038/s41598-018-21051-3

Article  Google Scholar 

ALOthman ZA, Wabaidur SM (2018) Application of carbon nanotubes in extraction and chromatographic analysis: a review. Arab J Chem 12(15):1878–5352

Google Scholar 

Al-Saadi M, Al-Mamun A, Muyibi SA et al (2010) Optimization of synthesis of carbon nanotubes on iron impregnated activated carbon. In: Conference: 24th symposium of Malaysian chemical engineers (SOMChE 2010), Kuala Lumpur, Malaysia

Alsaadi MA, Al-Mamun A, Muyibi SA, et al (2011) Synthesis of various carbon nanomaterials (CNMs) on powdered activated carbon by CVD reactor. In: Proceedings of the 2nd International Conference on Biotechnology Engineering, ICBioE’11

AlSaadi MA, Al Mamun A, Alam MZ et al (2016) Removal of cadmium from water by CNT-PAC composite: effect of functionalization. Nanobr Reports Rev. https://doi.org/10.1142/S1793292016500119

Article  Google Scholar 

Aslam MMA, Kuo HW, Den W et al (2021) Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: preparation to application. Sustain 13:1–54. https://doi.org/10.3390/su13105717

CAS  Article  Google Scholar 

Baker RTK, Harris PS, Thomas RB, Waite RJ (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 30:86–95. https://doi.org/10.1016/0021-9517(73)90055-9

CAS  Article  Google Scholar 

Belin T, Epron F (2005) Characterization methods of carbon nanotubes: A review. Mater Sci Eng B 119:105–118. https://doi.org/10.1016/j.mseb.2005.02.046

CAS  Article  Google Scholar 

Duc Vu Quyen N, Quang Khieu D, Tuyen TN et al (2019) Carbon nanotubes: synthesis via chemical vapour deposition without hydrogen, surface modification, and application. J Chem. https://doi.org/10.1155/2019/4260153

Article  Google Scholar 

Endo M, Takeuchi K, Tajiri T, Park KC, Wang F, Kim Y-A, Hayashi T, Terrones M, Dresselhaus MS (2006) Sodium chloride-catalyzed oxidation of multiwalled carbon nanotubes for environmental benefit. J Phys Chem B 110:12017–12021. https://doi.org/10.1021/jp061058o

CAS  Article  Google Scholar 

Geng J, Kinloch IA, Singh C et al (2005) Production of carbon nanofibers in high yields using a sodium chloride support. J Phys Chem B 109:16665–16670. https://doi.org/10.1021/jp051544w

CAS  Article  Google Scholar 

Gupta O, Roy S, Mitra S (2018) Enhanced membrane distillation of organic solvents from their aqueous mixtures using a carbon nanotube immobilized membrane. J Memb Sci 568:134–140. https://doi.org/10.1016/j.memsci.2018.10.002

CAS  Article  Google Scholar 

Hesas RH, Arami-niya A, Mohd W et al (2013) Preparation and characterization of activated carbon. BioResources 8:2950–2966

Google Scholar 

Howe JY, Rawn CJ, Jones LE, Ow H (2003) Improved crystallographic data for graphite. Powder Diffr 18:150–154. https://doi.org/10.1154/1.1536926

CAS  Article  Google Scholar 

Hsieh CT, Lin YT, Lin JY, Wei JL (2009) Synthesis of carbon nanotubes over Ni- and Co-supported CaCO3 catalysts using catalytic chemical vapor deposition. Mater Chem Phys 114:702–708. https://doi.org/10.1016/j.matchemphys.2008.10.034

CAS  Article  Google Scholar 

Hughes T, Chambers C (1889) Manufacture of carbon filaments. US patent no. 485615

Ibrahimov HD, Amirov FA, Huseynov HJ et al (2019) Carbon nanotubes obtained from natural gas by CVD. J Surf Investig 13:1244–1247. https://doi.org/10.1134/S1027451019060338

CAS  Article  Google Scholar 

Jayaraman T, Murthy AP, Elakkiya V et al (2018) Recent development on carbon based heterostructures for their applications in energy and environment: a review. J Ind Eng Chem 64:16–59. https://doi.org/10.1016/j.jiec.2018.02.029

CAS  Article  Google Scholar 

Kinloch IA, Chen GZ, Howes J et al (2003) Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon NY 41:1127–1141. https://doi.org/10.1016/S0008-6223(03)00020-4

CAS  Article  Google Scholar 

Li R, Antunes EF, Kalfon-Cohen E et al (2019) Low-temperature growth of carbon nanotubes catalyzed by sodium-based ingredients. Communications 58:9204–9209. https://doi.org/10.1002/anie.201902516

CAS  Article  Google Scholar 

Li R, Antunes EF, Liotta AH et al (2020) Sodium-catalyzed growth of carbon nanotubes for interlaminar reinforcement of unidirectional hierarchical laminates. AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-0154

Article  Google Scholar 

Liu BH, Ding J, Zhong ZY et al (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96–102. https://doi.org/10.1016/S0009-2614(02)00592-4

CAS  Article  Google Scholar 

Liu BH, Ding J, Dong ZL et al (2006) Mechanochemical synthesis of fe-based nanocomposites and their application in the catalytic formation of carbon nanostructures. Solid State Phenom 111:183–186. https://doi.org/10.4028/www.scientific.net/SSP.111.183

CAS  Article  Google Scholar 

Ma L, Dong X, Chen M et al (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)—based composite membranes: a review. Membranes (Basel). https://doi.org/10.3390/membranes7010016

Article  Google Scholar 

Magrez A, Seo JW, Smajda R et al (2010) Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials (Basel) 3:4871–4891. https://doi.org/10.3390/ma3114871

CAS  Article  Google Scholar 

Manawi YM, Ihsanullah SA et al (2018) A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (Basel) 11:822. https://doi.org/10.3390/ma11050822

CAS  Article  Google Scholar 

Mohammed M, Abdulhakim M, Hashim NA et al (2019) Embedded high-hydrophobic CNMs prepared by CVD technique with PVDF-co-HFP membrane for application in water desalination by DCMD. Desalin Water Treament. https://doi.org/10.5004/dwt.2019.23431

Article  Google Scholar 

Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2:1306–1323. https://doi.org/10.1039/b9nr00427k

CAS  Article  Google Scholar 

Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

CAS  Article  Google Scholar 

Onundi YB, Al-mamun A, Al-khatib MFR, Ahmed YM (2011) Growth of carbon nanomaterials on granular activated carbon. Adv Mater Res 264–265:535–541. https://doi.org/10.4028/www.scientific.net/AMR.264-265.535

CAS  Article  Google Scholar 

Radushkevich L, Lukyanovich VM (1952) About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. J Phys Chem 26:88–95

CAS  Google Scholar 

Rajarao R, Bhat BR (2012) Large scale synthesis of carbon nanofibres on sodium chloride support. Nanomater Nanotechnol 2:1–6. https://doi.org/10.5772/50306

CAS  Article  Google Scholar 

Sari AH, Khazali A, Parhizgar SS (2018) Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution. Int Nano Lett 8:19–23. https://doi.org/10.1007/s40089-018-0227-5

CAS  Article  Google Scholar 

Seo JW, Couteau E, Umek P et al (2003) Synthesis and manipulation of carbon nanotubes. New J Phys 5:120.1-120.22. https://doi.org/10.1088/1367-2630/5/1/120

Article  Google Scholar 

Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82. https://doi.org/10.1016/j.mssp.2015.08.013

CAS  Article  Google Scholar 

Sivakumar V, Mohamed AR, Abdullah AZ, Chai SP (2010) Role of reaction and factors of carbon nanotubes growth in chemical vapour decomposition process using Methane-A highlight. J Nanomater. https://doi.org/10.1155/2010/395191

Article  Google Scholar 

Szabó A, Méhn D, Kónya Z et al (2003) “Wash and go”: sodium chloride as an easily removable catalyst support for the synthesis of carbon nanotubes. PhysChemComm 6:40–41. https://doi.org/10.1039/b305670h

CAS  Article  Google Scholar 

Tarboush BA, Mjalli FS, Alsaadi MA, Aljumaily MM (2021) Potassium hydroxide as a novel catalyst for metal-free carbon nanotubes growth on powder activated carbon. Phys B Condens Matter 621:413294. https://doi.org/10.1016/j.physb.2021.413294

CAS  Article  Google Scholar 

Veziri CM, Pilatos G, Karanikolos GN et al (2008) Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition. Microporous Mesoporous Mater 110:41–50. https://doi.org/10.1016/j.micromeso.2007.09.002

CAS  Article  Google Scholar 

Wang SD, Chang MH, Der LKM et al (2005) Synthesis of carbon nanotubes by arc discharge in sodium chloride solution. Carbon N Y 43:1792–1795. https://doi.org/10.1016/j.carbon.2005.02.003

CAS  Article  Google Scholar 

Wang X-D, Vinodgopal K, Dai G-P (2019) Synthesis of carbon nanotubes by catalytic chemical vapor deposition. In: Saleh HE, El-Sheikh SMM (eds) Perspective of carbon nanotubes. IntechOpen. https://doi.org/10.5772/intechopen.77444

Chapter 

留言 (0)

沒有登入
gif