Oncofetal reprogramming in tumour development and progression

Ma, Y. et al. The relationship between early embryo development and tumourigenesis. J. Cell Mol. Med. 14, 2697–2701 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Manzo, G. Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view. Front. Cell Dev. Biol. 7, 20 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Kerosuo, L. & Bronner-Fraser, M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin. Cell Dev. Biol. 23, 320–332 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Caramel, J. et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24, 466–480 (2013).

CAS  PubMed  Article  Google Scholar 

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

CAS  PubMed  Article  Google Scholar 

Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020).

CAS  PubMed  Article  Google Scholar 

Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

CAS  PubMed  Article  Google Scholar 

Suvà, M. L. & Tirosh, I. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell 75, 7–12 (2019).

PubMed  Article  CAS  Google Scholar 

Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Smith, E. A. & Hodges, H. C. The spatial and genomic hierarchy of tumor ecosystems revealed by single-cell technologies. Trends Cancer 5, 411–425 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Ungefroren, H., Sebens, S., Seidl, D., Lehnert, H. & Hass, R. Interaction of tumor cells with the microenvironment. Cell Commun. Signal. 9, 18 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

CAS  PubMed  Article  Google Scholar 

Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Flier, J. S., Underhill, L. H. & Dvorak, H. F. Tumors: wounds that do not heal. N. Engl. J. Med. 315, 1650–1659 (1986).

Article  Google Scholar 

Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

CAS  PubMed  Article  Google Scholar 

Deyell, M., Garris, C. S. & Laughney, A. M. Cancer metastasis as a non-healing wound. Br. J. Cancer 124, 1491–1502 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

CAS  PubMed  Article  Google Scholar 

Hayashi, P. H. & Zeldis, J. B. Molecular biology of viral hepatitis and hepatocellular carcinoma. Compr. Ther. 19, 188–196 (1993).

CAS  PubMed  Google Scholar 

Pera, M. et al. Barrett’s disease: pathophysiology of metaplasia and adenocarcinoma. Ann. Thorac. Surg. 56, 1191–1197 (1993).

CAS  PubMed  Article  Google Scholar 

Bedwani, R. et al. Schistosomiasis and the risk of bladder cancer in Alexandria, Egypt. Br. J. Cancer 77, 1186–1189 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Choi, P. M. & Zelig, M. P. Similarity of colorectal cancer in Crohn’s disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut 35, 950–954 (1994).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Toller, I. M. et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc. Natl Acad. Sci. USA 108, 14944–14949 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aguilar-Cazares, D. et al. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 9, 1399 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

CAS  PubMed  Article  Google Scholar 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

CAS  PubMed  Article  Google Scholar 

Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

CAS  PubMed  Article  Google Scholar 

Stone, R. C. et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365, 495–506 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yan, C. et al. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. Am. J. Pathol. 176, 2247–2258 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rosenblum, D. & Naik, S. New dog, old tricks: developmental programs resurface in inflammation. Cell Stem Cell 28, 592–594 (2021).

CAS  PubMed  Article  Google Scholar 

Zhu, X. et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal. Transduct. Target. Ther. 6, 245 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Kundu, J. K. & Surh, Y.-J. Inflammation: gearing the journey to cancer. Mutat. Res. 659, 15–30 (2008).

CAS  PubMed  Article  Google Scholar 

Lillie, F. R. The Development of the Chick: an Introduction to Embryology, 2nd edn. (Henry Holt, 1908).

Abelev, G. I., Perova, S. D., Khramkova, N. I., Postnikova, Z. A. & Irlin, I. S. Production of embryonal α-globulin by transplantable mouse hepatomas. Transplantation 1, 174–180 (1963).

CAS  PubMed  Article  Google Scholar 

Gold, P. & Freedman, S. O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med. 122, 467–481 (1965).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schapira, F., Dreyfus, J.-C. & Schapira, G. Anomaly of aldolase in primary liver cancer. Nature 200, 995–997 (1963).

CAS  PubMed  Article  Google Scholar 

Banwo, O., Versey, J. & Hobbs, J. R. New oncofetal antigen for human pancreas. Lancet 303, 643–645 (1974).

Article  Google Scholar 

Laurence, D. J. R. et al. Role of plasma carcinoembryonic antigen in diagnosis of gastrointestinal, mammary, and bronchial carcinoma. Br. Med. J. 3, 605–609 (1972).

留言 (0)

沒有登入
gif