6-O-(2-[18F]Fluoroethyl)-6-O-Desmethyl-Diprenorphine ([18F]FE-DPN) Preferentially Binds to Mu Opioid Receptors In Vivo

Wester HJ, Willoch F, Tolle TR et al (2000) 6-O-(2-[18F]fluoroethyl)-6-O-desmethyldiprenorphine ([18F]DPN): synthesis, biologic evaluation, and comparison with [11C]DPN in humans. J Nucl Med 41:1279–1286

CAS  PubMed  Google Scholar 

Mueller C, Klega A, Buchholz HG et al (2010) Basal opioid receptor binding is associated with differences in sensory perception in healthy human subjects: a [18F]diprenorphine PET study. Neuroimage 49:731–737

Article  Google Scholar 

Thompson SJ, Pitcher MH, Stone LS et al (2018) Chronic neuropathic pain reduces opioid receptor availability with associated anhedonia in rat. Pain 159:1856–1866

CAS  Article  Google Scholar 

Raynor K, Kong H, Chen Y et al (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol 45:330–334

CAS  PubMed  Google Scholar 

Chang KJ, Hazum E, Cuatrecasas P (1980) Possible role of distinct morphine and enkephalin receptors in mediating actins of benzomorphan drugs (putative kappa and sigma agonists). Proc Natl Acad Sci U S A 77:4469–4473

CAS  Article  Google Scholar 

Chang KJ, Hazum E, Cuatrecasas P (1981) Novel opiate binding sites selective for benzomorphan drugs. Proc Natl Acad Sci U S A 78:4141–4145

CAS  Article  Google Scholar 

Henriksen G, Willoch F, Talbot PS, Wester HJ (2006) Recent development and potential use of mu- and kappa-opioid receptor ligands in positron emission tomography studies. Drug Develop Res 67:890–904

CAS  Article  Google Scholar 

Schoultz BW, Hjornevik T, Reed BJ et al (2014) Synthesis and evaluation of three structurally related (1)(8)F-labeled orvinols of different intrinsic activities: 6-O-[(1)(8)F]fluoroethyl-diprenorphine ([(1)(8)F]FDPN), 6-O-[(1)(8)F]fluoroethyl-buprenorphine ([(1)(8)F]FBPN), and 6-O-[(1)(8)F]fluoroethyl-phenethyl-orvinol ([(1)(8)F]FPEO). J Med Chem 57:5464–5469

CAS  Article  Google Scholar 

Frost JJ, Dannals RF, Duelfer T et al (1984) In vivo studies of opiate receptors. Ann Neurol 15(Suppl):S85-92

Article  Google Scholar 

Zeeberg BR (1999) Pharmacokinetic computer simulations of the relationship between in vivo and in vitro neuroreceptor subtype selectivity of radioligands. Nucl Med Biol 26:803–809

CAS  Article  Google Scholar 

Frost JJ, Smith AC, Wagner HN Jr (1986) 3H-diprenorphine is selective for mu opiate receptors in vivo. Life Sci 38:1597–1606

CAS  Article  Google Scholar 

Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain III. The telencephalon Brain Res 134:393–405

CAS  Article  Google Scholar 

Marton J, Cumming P, Bauer B, Henriksen G (2021) A new precursor for the radiosynthesis of 6-O-(2-[(18) F]fluoroethyl)-6-O-desmethyl-diprenorphine ([F-18]FE-DPN) by nucleophilic radiofluorination. Lett Org Chem 18:344–352

CAS  Article  Google Scholar 

Bonaventura J, Lam S, Carlton M et al (2021) Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry 26:6704–6722

CAS  Article  Google Scholar 

Ichise M, Ballinger JR, Golan H et al (1996) Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med 37:513–520

CAS  PubMed  Google Scholar 

Kitchen I, Slowe SJ, Matthes HW, Kieffer B (1997) Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res 778:73–88

CAS  Article  Google Scholar 

Cumming P, Marton J, Lilius TO, Olberg DE, Rominger A (2019) A survey of molecular imaging of opioid receptors. Molecules 24:4190.

留言 (0)

沒有登入
gif