1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase

An emerging hallmark of cancer is cellular metabolic reprogramming to adapt to varying cellular environments. Throughout the process of metastasis cancer cells gain anchorage independence which confers survival characteristics when detached from the extracellular matrix (ECM). Previous work demonstrates that the bioactive metabolite of vitamin D, 1α,25-dihydroxyvitamin D (1,25[OH]2D), suppresses cancer progression, potentially by suppressing the ability of cells to metabolically adapt to varying cellular environments such as ECM detachment. The purpose of the present study was to determine the mechanistic bases of the effects of 1,25(OH)2D on cell survival in ECM-detached conditions. Pretreatment of MCF10A-ras breast cancer cells for 3 d with 1,25(OH)2D reduced the viability of cells in subsequent detached conditions by 11%. Enrichment of 13C5-glutamine was reduced in glutamate (21%), malate (30%), and aspartate (23%) in detached compared to attached MCF10A-ras cells. Pretreatment with 1,25(OH)2D further reduced glutamine flux into downstream metabolites glutamate (5%), malate (6%), and aspartate (10%) compared to detached vehicle treated cells. Compared to attached cells, detachment increased pyruvate carboxylase (PC) mRNA abundance and protein expression by 95% and 190%, respectively. Consistent with these results, 13C6-glucose derived M+3 labelling was shown to preferentially replenish malate and aspartate, but not citrate pools, demonstrating increased PC activity in detached cells. In contrast, 1,25(OH)2D pretreatment of detached cells reduced PC mRNA abundance and protein expression by 63% and 56%, respectively, and reduced PC activity as determined by decreased 13C6-glucose derived M+3 labeling in citrate (8%) and aspartate (50%) pools, relative to vehicle-treated detached cells. While depletion of PC with doxycycline-inducible shRNA reduced detached cell viability, PC knockdown in combination with 1,25(OH)2D treatment did not additionally affect the viability of detached cells. Further, PC overexpression improved detached cell viability, and inhibited the effect of 1,25(OH)2D on detached cell survival, suggesting that 1,25(OH)2D mediates its effects in detachment through regulation of PC expression. These results suggest that inhibition of PC by 1,25(OH)2D suppresses cancer cell anchorage independence.

留言 (0)

沒有登入
gif