The Pathogenic Role of Oxidative Stress, Cytokine Expression, and Impaired Hematological Indices in Diabetic Cardiovascular Diseases

Daryabor, G., M.R. Atashzar, D. Kabelitz, S. Meri, and K. Kalantar. 2020. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Frontiers in Immunology 11: 1582.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Arnett, D.K., R.S. Blumenthal, M.A. Albert, A.B. Buroker, Z.D. Goldberger, E.J. Hahn, et al. 2019. ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology 74: 1376–1414.

PubMed  PubMed Central  Article  Google Scholar 

Bharath, L.P., J.D. Rockhold, and R. Conway. 2021. Selective autophagy in hyperglycemia-induced microvascular and macrovascular diseases. Cells 10: 2114.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhou, Y., D.D. Murugan, H. Khan, Y. Huang, and W.S. Cheang. 2021. Roles and therapeutic implications of endoplasmic reticulum stress and oxidative stress in cardiovascular diseases. Antioxidants 10: 1167.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Salvatore, T., P.C. Pafundi, R. Galiero, G. Albanese, A. Di Martino, A. Caturano, et al. 2021. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Frontiers in Medicine 8: 695792.

PubMed  PubMed Central  Article  Google Scholar 

Tahir, A., P.J. Martinez, F. Ahmad, S.P. Fisher-Hoch, J. McCormick, J.L. Gay, et al. 2021. An evaluation of lipid profile and pro-inflammatory cytokines as determinants of cardiovascular disease in those with diabetes: A study on a Mexican American cohort. Scientific Reports 11: 1–12.

Article  CAS  Google Scholar 

Kaur, N., Y. Guan, R. Raja, A. Ruiz-Velasco, and W. Liu. 2021. Mechanisms and therapeutic prospects of diabetic cardiomyopathy through the inflammatory response. Frontiers in Physiology 12: 694864.

PubMed  PubMed Central  Article  Google Scholar 

Byrne, N.J., N.S. Rajasekaran, E.D. Abel, and H. Bugger. 2021. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radical Biology and Medicine 169: 317–342.

CAS  PubMed  Article  Google Scholar 

Su, J.H., M.Y. Luo, N. Liang, S.X. Gong, W. Chen, W.Q. Huang, et al. 2021. Interleukin-6: A novel target for cardio-cerebrovascular diseases. Frontiers in Pharmacology 12: 745061.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huard, A., H.N. Do, A.C. Frank, E. Sirait-Fischer, D. Fuhrmann, M.C. Hofmann, et al. 2021. IL-38 ablation reduces local inflammation and disease severity in experimental autoimmune encephalomyelitis. The Journal of Immunology 206: 1058–1066.

CAS  PubMed  Article  Google Scholar 

Ye, C., H. Yano, C.J. Workman, and D.A. Vignali. 2021. Interleukin-35: Structure, function and its impact on immune-related diseases. Journal of Interferon & Cytokine Research 41: 391–406.

Article  CAS  Google Scholar 

Arkew, M., T. Yemane, Y. Mengistu, K. Gemechu, and G. Tesfaye. 2021. Hematological parameters of type 2 diabetic adult patients at Debre Berhan Referral Hospital, Northeast Ethiopia: A comparative cross-sectional study. PLoS ONE 16: e0253286.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mahdi, A., M.M. Cortese-Krott, M. Kelm, N. Li, and J. Pernow. 2021. Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radical Biology and Medicine 168: 95–109.

CAS  PubMed  Article  Google Scholar 

Friedewald, W.T., R.I. Levy, and D.S. Fredrickson. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry 18: 499–502.

CAS  PubMed  Article  Google Scholar 

Ross, R. 1993. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362: 801–809.

CAS  PubMed  Article  Google Scholar 

Wallace, T.M., J.C. Levy, and D.R. Matthews. 2004. Use and abuse of HOMA modeling. Diabetes Care 27: 1487–1495.

PubMed  Article  Google Scholar 

Poznyak, A., A.V. Grechko, P. Poggio, V.A. Myasoedova, V. Alfieri, and A.N. Orekhov. 2020. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. International Journal of Molecular Sciences 21: 1835.

CAS  PubMed Central  Article  Google Scholar 

Fathelbab, M., E.M. Fahmy, A.A. Elshormilisy, A.E. Gaafar, and N.E. Waly. 2017. A putative role for oxidative stress in pathophysiology of diabetic cardiomyopathy. Egyptian Journal of Obesity, Diabetes and Endocrinology 3: 95–99.

Google Scholar 

Abdelazeem, A.H., A.S. Abuelsaad, A. Abdel-Moniem, and M. Abdel-Gabbar. 2021. Association of metabolic syndrome components with alterations in oxidative stress and cytokines expression. Journal of Taibah University for Science 15: 928–940.

Article  Google Scholar 

Neri, M., V. Fineschi, M. Di Paolo, C. Pomara, I. Riezzo, E. Turillazzi, et al. 2015. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology 13: 26–36.

CAS  PubMed  Article  Google Scholar 

Lee, W.S., and J. Kim. 2017. Diabetic cardiomyopathy: Where we are and where we are going. The Korean Journal of Internal Medicine 32: 404–421.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gómez-Marcos, M.A., A.M. Blázquez-Medela, L. Gamella-Pozuelo, J.I. Recio-Rodriguez, L. García-Ortiz, and C. Martínez-Salgado. 2016. Serum superoxide dismutase is associated with vascular structure and function in hypertensive and diabetic patients. Oxidative Medicine and Cellular Longevity 2016: 9124676.

PubMed  Article  CAS  Google Scholar 

Aladağ, N., R. Asoğlu, M. Ozdemir, E. Asoğlu, A.R. Derin, C. Demir, et al. 2021. Oxidants and antioxidants in myocardial infarction (MI): Investigation of ischemia modified albumin, malondialdehyde, superoxide dismutase and catalase in individuals diagnosed with ST elevated myocardial infarction (STEMI) and non-STEMI (NSTEMI). Journal of Medical Biochemistry 40: 286–294.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Darogha, S.N. 2021. Serum levels of TNF-a and IFN-g gene polymorphism in type 2 diabetes mellitus in Kurdish patients. Cellular and Molecular Biology 67: 171–177.

PubMed  Article  Google Scholar 

Fu, Y., Y. Wu, and E. Liu. 2020. C-reactive protein and cardiovascular disease: From animal studies to the clinic. Experimental and Therapeutic Medicine 20: 1211–1219.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhu, L., Y. Zou, Y. Wang, X. Luo, X. Sun, K., H. Wang, et al. 2017. Prognostic significance of plasma high-sensitivity C-reactive protein in patients with hypertrophic cardiomyopathy. Journal of the American Heart Association 6 (2): e004529.

PubMed  PubMed Central  Article  Google Scholar 

Koosha, P., H. Roohafza, N. Sarrafzadegan, M. Vakhshoori, M. Talaei, E. Sheikhbahaei, et al. 2020. High sensitivity C-reactive protein predictive value for cardiovascular disease: A nested case control from Isfahan cohort study (ICS). Global Heart 15: 3.

PubMed  PubMed Central  Article  Google Scholar 

Hage, C., E. Michaëlsson, C. Linde, E. Donal, J.C. Daubert, L.M. Gan, et al. 2017. Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction: a holistic proteomic approach. Circulation: Cardiovascular Genetics 10: e001633.

Fanola, C.L., D.A. Morrow, C.P. Cannon, P. Jarolim, M.A. Lukas, C. Bode, et al. 2017. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: Observations from the SOLID-TIMI 52 (stabilization of plaque using darapladib—thrombolysis in myocardial infarction 52) trial. Journal of the American Heart Association 6: e005637.

PubMed  PubMed Central  Article  Google Scholar 

Franssen, C., S. Chen, A. Unger, H.I. Korkmaz, G.W. De Keulenaer, C. Tschöpe, et al. 2016. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. Journal of the American College of Cardiology: Heart Failure 4: 312–324.

Yasuda, K., K. Nakanishi, and H. Tsutsui. 2019. Interleukin-18 in health and disease. International Journal of Molecular Sciences 20: 649.

CAS  PubMed Central  Article  Google Scholar 

Xiao, H., H. Li, J.J. Wang, J.S. Zhang, J. Shen, X.B. An, et al. 2018. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal 39: 60–69.

CAS  PubMed  Article  Google Scholar 

Bahrami, A., T. Sathyapalan, and A. Sahebkar. 2021. The role of interleukin-18 in the development and progression of atherosclerosis. Current Medicinal Chemistry 28: 1757–1774.

CAS  PubMed  Article  Google Scholar 

Wei, Y., Y. Lan, Y. Zhong, K. Yu, W. Xu, R. Zhu, et al. 2020. Interleukin-38 alleviates cardiac remodeling after myocardial infarction. Journal of Cellular and Molecular Medicine 24: 371–384.

CAS  PubMed  Article  Google Scholar 

Gupta, A., Y.D. Fei, T.Y. Kim, A. Xie, K. Batai, I. Greener, et al. 2021. IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias. Blood, The Journal of the American Society of Hematology 137: 1208–1218.

CAS  Google Scholar 

Sha, X., S. Meng, X. Li, H. Xi, M. Maddaloni, D.W. Pascual, et al. 2015. Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway. Journal of Biological Chemistry 290: 19307–19318.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ye, J., Y. Huang, B. Que, C. Chang, W. Liu, H. Hu, et al. 2018. Interleukin-12p35 knock out aggravates doxorubicin-induced cardiac injury and dysfunction by aggravating the inflammatory response, oxidative stress, apoptosis and autophagy in mice. eBioMedicine 35: 29–39.

PubMed  PubMed Central  Article  Google Scholar 

Zhou, F., T. Feng, X. Lu, H. Wang, Y. Chen, Q. Zhang, et al. 2021. Interleukin 35 protects cardiomyocytes following ischemia/reperfusion-induced apoptosis via activation of mitochondrial STAT3. Acta Biochimica et Biophysica Sinica 53: 410–418.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif