Programmable Genome-Editing Technologies as Single-Course Therapeutics for Atherosclerotic Cardiovascular Disease

Nakamura M, Gao Y, Dominguez AA, et al. CRISPR technologies for precise epigenome editing. Nat Cell Biol. 2021;23:11–22. https://doi.org/10.1038/s41556-020-00620-7.

CAS  Article  PubMed  Google Scholar 

Musunuru K. Moving toward genome-editing therapies for cardiovascular diseases. J Clin Investig. 2022;132(1):e148555. https://doi.org/10.1172/JCI148555.

Article  PubMed  PubMed Central  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.). 2012;337(6096):816–821. https://doi.org/10.1126/science.1225829

Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169–75. https://doi.org/10.1093/genetics/161.3.1169.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science (New York, N.Y.). 2003;300(5620):764. https://doi.org/10.1126/science.1079512

Komor A, Kim Y, Packer M, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gaudelli N, Komor A, Rees H, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71. https://doi.org/10.1038/nature24644.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jiang T, Henderson JM, Coote K, et al. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun. 2020;11:1979. https://doi.org/10.1038/s41467-020-15892-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Musunuru K. Genome editing: a practical guide to research and clinical applications. Academic Press; 2021:123–26.

Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, Ramadoss GN, Shi Q, Hung KL, Samelson AJ, Pogson AN, Kim JYS, Chung A, Leonetti MD, Chang HY, Kampmann M, Bernstein BE, Hovestadt V, Gilbert LA, Weissman JS. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184(9). https://doi.org/10.1016/j.cell.2021.03.025

Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57. https://doi.org/10.1038/s41586-019-1711-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2021. https://doi.org/10.1038/s41587-021-01133-w

Cox D, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Science (New York, N.Y.). 2017;358(6366):1019–1027. https://doi.org/10.1126/science.aaq0180

Hannon G. RNA interference. Nature. 2002;418:244–51. https://doi.org/10.1038/418244a.

CAS  Article  PubMed  Google Scholar 

De Castro-Orós I, Pocoví M, Civeira F. The genetic basis of familial hypercholesterolemia: inheritance, linkage, and mutations. Appl Clin Genet. 2010;3:53–64. https://doi.org/10.2147/tacg.s8285.

Article  PubMed  PubMed Central  Google Scholar 

Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022–36. https://doi.org/10.1161/circresaha.114.301621.

CAS  Article  PubMed  Google Scholar 

Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, & FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376(18):1713–1722. https://doi.org/10.1056/NEJMoa1615664

Raedler LA. Praluent (Alirocumab): First PCSK9 Inhibitor Approved by the FDA for hypercholesterolemia. Am Health Drug Benefits. 2016;9(Spec Feature):123–126.

Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard P, Curcio D, Jaros MJ, Leiter LA, Kastelein J & ORION-9 Investigators (2020). Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382(16):1520–1530. https://doi.org/10.1056/NEJMoa1913805

Tarugi P, Bertolini S, Calandra S. Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia. J Biomed Res. 2019;33(2):73–81. https://doi.org/10.7555/JBR.32.20170114.

Article  PubMed  PubMed Central  Google Scholar 

Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein J, Rubba P, Ali S, Banerjee P, Chan KC, Gipe DA, Khilla N, Pordy R, Weinreich DM, Yancopoulos GD, Zhang Y, Gaudet D, & ELIPSE HoFH Investigators (2020). Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383(8):711–720. https://doi.org/10.1056/NEJMoa2004215

Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O'Connell D, Walsh KR, Wood K, Phillips J, Xu Y, Amaral A, Boyd AP, Cehelsky JE, McKee MD, Schiermeier A, Harari O, Murphy A, Kyratsous CA, … Lebwohl D (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 385(6):493–502. https://doi.org/10.1056/NEJMoa2107454. first-in-human demonstration of genome editing

Musunuru K, Chadwick AC, Mizoguchi T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021;593:429–434. https://doi.org/10.1038/s41586-021-03534-y. landmark demonstration of genome editing for the treatment of hyperlipidemia in nonhuman primates

留言 (0)

沒有登入
gif