Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide

Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tan, N. H. & Zhou, J. Plant cyclopeptides. Chem. Rev. 106, 840–895 (2006).

CAS  PubMed  Article  Google Scholar 

Gunasekera, S., Daly, N. L., Anderson, M. A. & Craik, D. J. Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. IUBMB Life 58, 515–524 (2006).

CAS  PubMed  Article  Google Scholar 

Cascales, L. & Craik, D. J. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org. Biomol. Chem. 8, 5035–5047 (2010).

CAS  PubMed  Article  Google Scholar 

Lee, J., Mcintosh, J., Hathaway, B. J. & Schmidt, E. W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc. 131, 2122–2124 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919 (2015).

CAS  PubMed  Article  Google Scholar 

Maksimov, M. O. & Link, A. J. Prospecting genomes for lasso peptides. J. Ind. Microbiol. Biotechnol. 41, 333–344 (2014).

CAS  PubMed  Article  Google Scholar 

Cheung-Lee, W. L. & Link, A. J. Genome mining for lasso peptides: past, present, and future. J. Ind. Microbiol. Biotechnol. 46, 1371–1379 (2019).

CAS  PubMed  Article  Google Scholar 

Kawulka, K. et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine. J. Am. Chem. Soc. 125, 4726–4727 (2003).

CAS  PubMed  Article  Google Scholar 

Kawulka, K. E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43, 3385–3395 (2004).

CAS  PubMed  Article  Google Scholar 

Brown, L. C. W., Acker, M. G., Clardy, J., Walsh, C. T. & Fischbach, M. A. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc. Natl Acad. Sci. USA 106, 2549–2553 (2009).

Article  Google Scholar 

Kelly, W. L., Pan, L. & Li, C. Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J. Am. Chem. Soc. 131, 4327–4334 (2009).

CAS  PubMed  Article  Google Scholar 

Bagley, M. C., Dale, J. W., Merritt, E. A. & Xiong, X. Thiopeptide antibiotics. Chem. Rev. 105, 685–714 (2005).

CAS  PubMed  Article  Google Scholar 

Willey, J. M. & van der Donk, W. A. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61, 477–501 (2007).

CAS  PubMed  Article  Google Scholar 

Knerr, P. J. & van der Donk, W. A. Discovery, biosynthesis, and engineering of lantipeptides. Annu. Rev. Microbiol. 81, 479–505 (2012).

CAS  Google Scholar 

Bierbaum, G. & Sahl, H. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol. 10, 2–18 (2009).

CAS  PubMed  Article  Google Scholar 

Schramma, K. R., Bushin, L. B. & Seyedsayamdost, M. R. Structure and biosynthesis of macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7, 431–437 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Okino, T., Matsuda, H., Murakami, M. & Yamaguchi, K. New microviridins, elastase inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron 51, 10679–10686 (1995).

CAS  Article  Google Scholar 

Li, K., Condurso, H. L., Li, G., Ding, Y. & Bruner, S. D. Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Nat. Chem. Biol. 12, 973–979 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Liao, R. et al. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem. Biol. 16, 141–147 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Walsh, C. T., Malcolmson, S. J. & Young, T. S. Three ring posttranslational circuses: insertion of oxazoles, thiazoles, and pyridines into protein-derived frameworks. ACS Chem. Biol. 7, 429–442 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ireland, C. & Scheuer, P. J. Ulicyclamide and ulithiacyclamide, two new small peptides from a marine tunicate. J. Am. Chem. Soc. 102, 5688 (1980).

CAS  Article  Google Scholar 

Morris, R. P. et al. Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J. Am. Chem. Soc. 131, 5946–5955 (2009).

CAS  PubMed  Article  Google Scholar 

Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–391 (2012).

CAS  PubMed  Article  Google Scholar 

Maksimov, M. O., Pan, S. J. & Link, A. J. Lasso peptides: structure, function, biosynthesis, and engineering. Nat. Prod. Rep. 29, 996–1006 (2012).

CAS  PubMed  Article  Google Scholar 

Braffman, N. R. et al. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl Acad. Sci. USA 116, 1273–1278 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wilson, K. A. et al. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J. Am. Chem. Soc. 125, 12475–12483 (2003).

CAS  PubMed  Article  Google Scholar 

Travin, D. Y. et al. Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nat. Commun. 10, 4563 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Metelev, M. et al. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat. Chem. Biol. 13, 1129–1136 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ishitsuka, M. O., Kusumi, T., Kakisawa, H., Kaya, K. & Watanabe, M. M. Microviridin: a novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis. J. Am. Chem. Soc. 112, 8180–8182 (1990).

CAS  Article  Google Scholar 

Ahmed, M. N. et al. Phylogenomic analysis of the microviridin biosynthetic pathway coupled with targeted chemo-enzymatic synthesis yields potent protease inhibitors. ACS Chem. Biol. 12, 1538–1546 (2017).

CAS  PubMed  Article  Google Scholar 

Ziemert, N., Ishida, K., Weiz, A., Hertweck, C. & Dittmann, E. Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl. Environ. Microbiol. 76, 3568–3574 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C. & Dittmann, E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Ed. 47, 7756–7759 (2008).

CAS  Article  Google Scholar 

Philmus, B., Christiansen, G., Yoshida, W. Y. & Hemscheidt, T. K. Post-translational modification in microviridin biosynthesis. ChemBioChem 9, 3066–3073 (2008).

CAS  PubMed  Article  Google Scholar 

Philmus, B., Guerrette, J. P. & Hemscheidt, T. K. Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. ACS Chem. Biol. 4, 429–434 (2009).

CAS  PubMed  Article  Google Scholar 

Lee, H., Park, Y. & Kim, S. Enzymatic cross-linking of side chains generates a modified peptide with four hairpin-like bicyclic repeats. Biochemistry 56, 4927–4930 (2017).

CAS  PubMed  Article  Google Scholar 

Lee, C., Lee, H., Park, J. U. & Kim, S. Introduction of bifunctionality into the multidomain architecture of the ω-ester-containing peptide plesiocin. Biochemistry 59, 285–289 (2020).

CAS  PubMed  Article  Google Scholar 

Roh, H., Han, Y., Lee, H. & Kim, S. A topologically distinct modified peptide with multiple bicyclic core motifs expands the diversity of microviridin-like peptides. ChemBioChem 20, 1051–1059 (2019).

CAS  PubMed  Article  Google Scholar 

Lee, H., Choi, M., Park, J. U., Roh, H. & Kim, S. Genome mining reveals high topological diversity of ω-ester-containing peptides and divergent evolution of ATP-grasp macrocyclases. J. Am. Chem. Soc. 142, 3013–3023 (2020).

CAS  PubMed 

留言 (0)

沒有登入
gif