Voxel-Based Morphometry and Relaxometry Demonstrate Macro- and Microstructural Damages in Spinocerebellar Ataxia Type 3

Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Prim [Internet]. 2019 [cited 2021 Nov 7];5. Available from: https://pubmed.ncbi.nlm.nih.gov/30975995/

Lopes-Cendes I, Teive HG, Calcagnotto ME, Da Costa JC, Cardoso F, Viana E, et al. Frequency of the different mutations causing spinocerebellar ataxia (SCA1, SCA2, MJD/SCA3 and DRPLA) in a large group of Brazilian patients. Arq Neuropsiquiatr. 1997;55:519–29.

CAS  Article  Google Scholar 

Cintra VP, Lourenço CM, Marques SE, De Oliveira LM, Tumas V, Marques W. Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci [Internet]. 2014 [cited 2022 Apr 30];347:375–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25466696/

De Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil–frequencies and modulating effects of related genes. Cerebellum. 2014;13:17–28.

CAS  Article  Google Scholar 

Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.

Article  Google Scholar 

Moro A, Munhoz RP, Arruda WO, Raskin S, Moscovich M, Teive HAG. Spinocerebellar ataxia type 3: subphenotypes in a cohort of Brazilian patients. Arq Neuropsiquiatr. 2014;72:659–62.

Article  Google Scholar 

Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28:703–9.

CAS  Article  Google Scholar 

Rub U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol. 2008;21:111–6.

Article  Google Scholar 

Rezende TJR, de Paiva JLR, Martinez ARM, Lopes-Cendes I, Pedroso JL, Barsottini OGP, et al. Structural signature of SCA3: From presymptomatic to late disease stages. Ann Neurol. 2018;84:401–8.

Article  Google Scholar 

Wan N, Chen Z, Wan L, Tang B, Jiang H. MR Imaging of SCA3/MJD. Front Neurosci. Front Neurosci; 2020;14.

Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage. 2000;11:805–21.

CAS  Article  Google Scholar 

Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, et al. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology. 2010;257:455–62.

Article  Google Scholar 

Ravanfar P, Loi SM, Syeda WT, Van Rheenen TE, Bush AI, Desmond P, et al. Systematic review: quantitative susceptibility mapping (QSM) of Brain iron profile in neurodegenerative diseases. Front Neurosci. 2021;15.

Xie F, Weihua L, Lirong O, Wang X, Xing W. Quantitative susceptibility mapping in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). Acta Radiol. 2020;61:520–7.

Article  Google Scholar 

Cocosco CA, Zijdenbos AP, Evans AC. A fully automatic and robust brain MRI tissue classification method. Med Image Anal. 2003;7:513–27.

Article  Google Scholar 

Lukas C, Schöls L, Bellenberg B, Rüb U, Przuntek H, Schmid G, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408:230–5.

CAS  Article  Google Scholar 

Nanri K, Koizumi K, Mitoma H, Taguchi T, Takeguchi M, Ishiko T, et al. Classification of cerebellar atrophy using voxel-based morphometry and SPECT with an easy Z-score imaging system. Intern Med. 2010;49:535–41.

PubMed  Google Scholar 

Meles SK, Kok JG, De Jong BM, Renken RJ, de Vries JJ, Spikman JM, et al. The cerebral metabolic topography of spinocerebellar ataxia type 3. NeuroImage Clin Elsevier Inc. 2018;19:90–7.

Article  Google Scholar 

Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49:158–68.

Article  Google Scholar 

D’Abreu A, França MC, Yasuda CL, Campos BAG, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2012;22:285–91.

Article  Google Scholar 

Guimarães RP, D’Abreu A, Yasuda CL, França MC, Silva BHB, Cappabianco FAM, et al. A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov Disord. 2013;28:1125–32.

Article  Google Scholar 

Kang JS, Klein JC, Baudrexel S, Deichmann R, Nolte D, Hilker R. White matter damage is related to ataxia severity in SCA3. J Neurol. 2014;261:291–9.

CAS  PubMed  Google Scholar 

Duarte JV, Faustino R, Lobo M, Cunha G, Nunes C, Ferreira C, et al. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3. Hum Brain Mapp. John Wiley and Sons Inc. 2016;37:3656–68.

Google Scholar 

Peng H, Liang X, Long Z, Chen Z, Shi Y, Xia K, et al. Gene-related cerebellar neurodegeneration in SCA3/MJD: a case-controlled imaging-genetic study. Front Neurol. 2019;10.

Goel G, Pal PK, Ravishankar S, Venkatasubramanian G, Jayakumar PN, Krishna N, et al. Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord. 2011;17:521–7.

Article  Google Scholar 

Lopes TM, D’Abreu A, Junior MCF, Yasuda CL, Betting LE, Samara AB, et al. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol. 2013;260:2370–9.

CAS  PubMed  Google Scholar 

Guo J, Chen H, Biswal BB, Guo X, Zhang H, Dai L, et al. Gray matter atrophy patterns within the cerebellum-neostriatum-cortical network in SCA3. Neurology [Internet]. 2020 [cited 2022 Apr 21];95:e3036–44. Available from: https://pubmed.ncbi.nlm.nih.gov/33024025/

Vymazal J, Klempíř J, Jech R, Židovská J, Syka M, Růžička E, et al. MR relaxometry in Huntington’s disease: correlation between imaging, genetic and clinical parameters. J Neurol Sci. 2007;263:20–5.

PubMed  Google Scholar 

Martinez-Martin P, Rodriguez-Blazquez C, Forjaz MJ, Alvarez-Sanchez M, Arakaki T, Bergareche-Yarza A, et al. Relationship between the MDS-UPDRS domains and the health-related quality of life of Parkinson’s disease patients. Eur J Neurol. 2014;21:519–24.

CAS  Article  Google Scholar 

Sánchez-Castañeda C, Squitieri F, Di Paola M, Dayan M, Petrollini M, Sabatini U. The role of iron in gray matter degeneration in Huntington’s disease: a magnetic resonance imaging study. Hum Brain Mapp. 2015;36:50–66.

Article  Google Scholar 

Sánchez-Castañeda C, Cherubini A, Elifani F, Péran P, Orobello S, Capelli G, et al. Seeking Huntington disease biomarkers by multimodal, cross-sectional basal ganglia imaging. Hum Brain Mapp. 2013;34:1625–35.

Article  Google Scholar 

Syka M, Keller J, Klempíř J, Rulseh AM, Roth J, Jech R, et al. Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington’s disease patients. PLoS One. 2015;10.

Domínguez DJF, Ng ACL, Poudel G, Stout JC, Churchyard A, Chua P, et al. Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study. J Neurol Neurosurg Psychiatry. 2016;87:545–9.

Article  Google Scholar 

Van Bergen JMG, Hua J, Unschuld PG, Lim IAL, Jones CK, Margolis RL, et al. Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease. AJNR Am J Neuroradiol. 2016;37:789–96.

Article  Google Scholar 

Chen L, Hua J, Ross CA, Cai S, van Zijl PCM, Li X. Altered brain iron content and deposition rate in Huntington’s disease as indicated by quantitative susceptibility MRI. J Neurosci Res. 2019;97:467–79.

CAS  Article  Google Scholar 

Ward PGD, Harding IH, Close TG, Corben LA, Delatycki MB, Storey E, et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia. Mov Disord. 2019;34:335–43.

CAS  Article  Google Scholar 

Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1 2 and 3 Brain. 1998;121(Pt 9):1687–93.

Article  Google Scholar 

Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013;136:905–17.

Article  Google Scholar 

Callaert D V., Ribbens A, Maes F, Swinnen SP, Wenderoth N. Assessing age-related gray matter decline with voxel-based morphometry depends significantly on segmentation and normalization procedures. Front Aging Neurosci [Internet]. 2014 [cited 2022 Jul 3];6. Available from: https://pubmed.ncbi.nlm.nih.gov/25002845/

Kennedy KM, Erickson KI, Rodrigue KM, Voss MW, Colcombe SJ, Kramer AF, et al. Age-related differences in regional brain volumes: a comparison of optimized voxel-based morphometry to manual volumetry. Neurobiol Aging [Internet]. 2009 [cited 2022 Jul 3];30:1657–76. Available from: https://pubmed.ncbi.nlm.nih.gov/18276037/

Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, et al. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging [Internet]. 2014 [cited 2022 Jul 3];35:1862–72. Available from: https://pubmed.ncbi.nlm.nih.gov/24656835/

留言 (0)

沒有登入
gif