The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension

Auldridge, M. E., & Forest, K. T. (2011). Bacterial phytochromes: More than meets the light. Critical Reviews in Biochemistry and Molecular Biology, 46(1), 67–88.

CAS  PubMed  Article  Google Scholar 

Auldridge, M. E., Satyshur, K. A., Anstrom, D. M., & Forest, K. T. (2012). Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. Journal of Biological Chemistry, 287(10), 7000–7009.

CAS  PubMed  Article  Google Scholar 

Bellini, D., & Papiz, M. Z. (2012). Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor. Structure, 20(8), 1436–1446.

CAS  PubMed  Article  Google Scholar 

Bhoo, S.-H., Davis, S. J., Walker, J., Karniol, B., & Vierstra, R. D. (2001). Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature, 414(6865), 776–779.

CAS  PubMed  Article  Google Scholar 

Björling, A., Berntsson, O., Lehtivuori, H., Takala, H., Hughes, A. J., Panman, M., et al. (2016). Structural photoactivation of a full-length bacterial phytochrome. Science Advances, 2(8), e1600920.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N., & Fischer, R. (2005). The aspergillus nidulans phytochrome FPHA represses sexual development in red light. Current Biology, 15(20), 1833–1838.

CAS  PubMed  Article  Google Scholar 

Böhm, C., Gourinchas, G., Zweytick, S. et al. (2022) Characterisation of sequence–structure–function space in sensor–effector integrators of phytochrome-regulated diguanylate cyclases. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-022-00255-7

Article  Google Scholar 

Bostock, M. J., Solt, A. S., & Nietlispach, D. (2019). The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. Current Opinion in Structural Biology, 57, 145–156.

CAS  PubMed  Article  Google Scholar 

Buhrke, D., Gourinchas, G., Müller, M., Michael, N., Hildebrandt, P., & Winkler, A. (2020). Distinct chromophore-protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase. Journal of Biological Chemistry, 295(2), 539–551.

CAS  PubMed  Article  Google Scholar 

Burgie, E. S., Wang, T., Bussell, A. N., Walker, J. M., Li, H., & Vierstra, R. D. (2014). Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion. Journal of Biological Chemistry, 289(35), 24573–24587.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Burgie, E. S., Zhang, J., & Vierstra, R. D. (2016). Crystal structure of Deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion. Structure, 24(3), 448–457.

CAS  PubMed  Article  Google Scholar 

Chernov, K. G., Redchuk, T. A., Omelina, E. S., & Verkhusha, V. V. (2017). Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chemical Reviews, 117(9), 6423–6446.

CAS  PubMed  Article  Google Scholar 

Claesson, E., Wahlgren, W. Y., Takala, H., Pandey, S., Castillon, L., Kuznetsova, V., et al. (2020). The primary structural photoresponse of phytochrome proteins captured by a femtosecond x-ray laser. eLife, 9, e53514.

PubMed  PubMed Central  Article  Google Scholar 

Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S., & Kandori, H. (2014). Microbial and animal Rhodopsins: Structures, functions, and molecular mechanisms. Chemical Reviews, 114(1), 126–163.

CAS  PubMed  Article  Google Scholar 

Essen, L.-O., Mailliet, J., & Hughes, J. (2008). The structure of a complete phytochrome sensory module in the PR ground state. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14709–14714.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Etzl, S., Lindner, R., Nelson, M. D., & Winkler, A. (2018). Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications. Journal of Biological Chemistry, 293(23), 9078–9089.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Foerstendorf, H., Mummert, E., Schäfer, E., Scheer, H., & Siebert, F. (1996). Fourier-transform infrared spectroscopy of phytochrome: Difference spectra of the intermediates of the photoreactions. Biochemistry, 35(33), 10793–10799.

CAS  PubMed  Article  Google Scholar 

Foerstendorf, H., Benda, C., Gärtner, W., Storf, M., Scheer, H., & Siebert, F. (2001). FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: Consequences for its protonation states, conformation, and protein interaction. Biochemistry, 40(49), 14952–14959.

CAS  PubMed  Article  Google Scholar 

Fushimi, K., & Narikawa, R. (2019). Cyanobacteriochromes: Photoreceptors covering the entire UV-to-visible spectrum. Current Opinion in Structural Biology, 57, 39–46.

CAS  PubMed  Article  Google Scholar 

Gasser, C., Taiber, S., Yeh, C.-M., Wittig, C. H., Hegemann, P., Ryu, S., et al. (2014). Engineering of a red-light–activated human camp/CGMP-specific phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8803–8808.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gourinchas, G., Etzl, S., & Winkler, A. (2017). Long-range allosteric signaling in red light-regulated diguanylyl cyclases. Science Advances, 3(3), e1602498.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Gourinchas, G., Heintz, U., & Winkler, A. (2018). Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife, 7, e34815.

PubMed  PubMed Central  Article  Google Scholar 

Gourinchas, G., Etzl, S., & Winkler, A. (2019). Bacteriophytochromes—from informative model systems of phytochrome function to powerful tools in cell biology. Current Opinion in Structural Biology, 57(57), 72–83.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gustavsson, E., Isaksson, L., Persson, C., Mayzel, M., Brath, U., Vrhovac, L., et al. (2020). Modulation of structural heterogeneity controls phytochrome photo switching. Biophysical Journal, 118(2), 415–421.

CAS  PubMed  Article  Google Scholar 

Heath, G. R., & Scheuring, S. (2019). Advances in high-speed atomic force microscopy (hs-afm) reveal dynamics of transmembrane channels and transporters. Current Opinion in Structural Biology, 57, 93–102.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hirose, Y., Rockwell, N. C., Nishiyama, K., Narikawa, R., Ukaji, Y., Inomata, K., et al. (2013). Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4974–4979.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gärtner, W., Wilde, A., & Börner, T. (1997). A prokaryotic phytochrome. Nature, 386(6626), 663–663.

CAS  PubMed  Article  Google Scholar 

Ihalainen, J. A., Gustavsson, E., Schroeder, L., Donnini, S., Lehtivuori, H., Isaksson, L., et al. (2018). Chromophore-protein interplay during the phytochrome photocycle revealed by step-scan FTIR spectroscopy. Journal of the American Chemical Society, 140(39), 12396–12404.

CAS  PubMed  Article  Google Scholar 

Kaberniuk, A. A., Shemetov, A. A., & Verkhusha, V. V. (2016). A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nature Methods, 13(7), 591–597.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Karniol, B., & Vierstra, R. D. (2003). The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2807–2812.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kottke, T., Lórenz-Fonfría, V. A., & Heberle, J. (2017). The grateful infrared: Sequential protein structural changes resolved by infrared difference spectroscopy. The Journal of Physical Chemistry B, 121(2), 335–350.

CAS  PubMed  Article  Google Scholar 

Kraskov, A., Buhrke, D., Scheerer, P., Shaef, I., Sanchez, J. C., Carrillo, M., et al. (2021). On the role of the conserved histidine at the chromophore isomerization site in phytochromes. The Journal of Physical Chemistry B, 125(50), 13696–13709.

CAS  PubMed  Article  Google Scholar 

Kübel, J., Chenchiliyan, M., Ooi, S. A., Gustavsson, E., Isaksson, L., Kuznetsova, V., et al. (2020). Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome. Physical Chemistry Chemical Physics, 22(17), 9195–9203.

PubMed  Article  Google Scholar 

Kurttila, M., Stucki-Buchli, B., Rumfeldt, J., Schroeder, L., Häkkänen, H., Liukkonen, A., et al. (2021). Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy. Physical Chemistry Chemical Physics, 23, 5615–5628.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif