Protein disulfide isomerase A1 as a novel redox sensor in VEGFR2 signaling and angiogenesis

Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71(2):226–235. https://doi.org/10.1016/j.cardiores.2006.04.015

CAS  Article  PubMed  Google Scholar 

Ushio-Fukai M (2007) VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 9(6):731–739. https://doi.org/10.1089/ars.2007.1556

CAS  Article  PubMed  Google Scholar 

Ushio-Fukai M, Urao N (2009) Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function. Antioxid Redox Signal 11(10):2517–2533. https://doi.org/10.1089/ARS.2009.2582

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273(25):15366–15372. https://doi.org/10.1074/jbc.273.25.15366

CAS  Article  PubMed  Google Scholar 

Simons M (2012) An inside view: VEGF receptor trafficking and signaling. Physiology (Bethesda) 27(4):213–222. https://doi.org/10.1152/physiol.00016.2012

CAS  Article  Google Scholar 

Eichmann A, Simons M (2012) VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24(2):188–193. https://doi.org/10.1016/j.ceb.2012.02.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fukai T, Ushio-Fukai M (2020) Cross-talk between NADPH oxidase and mitochondria: role in ROS signaling and angiogenesis. Cells. https://doi.org/10.3390/cells9081849

Article  PubMed  PubMed Central  Google Scholar 

Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M (2017) ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 312(6):C749–C764. https://doi.org/10.1152/ajpcell.00346.2016

Article  PubMed  PubMed Central  Google Scholar 

Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347. https://doi.org/10.1146/annurev.pharmtox.44.101802.121735

CAS  Article  PubMed  Google Scholar 

Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE. https://doi.org/10.1126/stke.3492006re8

Article  PubMed  Google Scholar 

Charles RL, Schroder E, May G, Free P, Gaffney PR, Wait R, Begum S, Heads RJ, Eaton P (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6(9):1473–1484. https://doi.org/10.1074/mcp.M700065-MCP200

CAS  Article  PubMed  Google Scholar 

Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24. https://doi.org/10.1016/j.cbpa.2008.01.021

CAS  Article  PubMed  PubMed Central  Google Scholar 

Benham AM (2012) The protein disulfide isomerase family: key players in health and disease. Antioxid Redox Signal 16(8):781–789. https://doi.org/10.1089/ars.2011.4439

CAS  Article  PubMed  Google Scholar 

Laurindo FR, Pescatore LA, Fernandes Dde C (2012) Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biol Med 52(9):1954–1969. https://doi.org/10.1016/j.freeradbiomed.2012.02.037

CAS  Article  Google Scholar 

Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288(37):26489–26496. https://doi.org/10.1074/jbc.R113.462929

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xiong B, Jha V, Min JK, Cho J (2020) Protein disulfide isomerase in cardiovascular disease. Exp Mol Med 52(3):390–399. https://doi.org/10.1038/s12276-020-0401-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim YM, Youn SW, Sudhahar V, Das A, Chandhri R, Cuervo Grajal H, Kweon J, Leanhart S, He L, Toth PT, Kitajewski J, Rehman J, Yoon Y, Cho J, Fukai T, Ushio-Fukai M (2018) Redox regulation of mitochondrial fission protein Drp1 by protein disulfide isomerase limits endothelial senescence. Cell Rep 23(12):3565–3578. https://doi.org/10.1016/j.celrep.2018.05.054

CAS  Article  PubMed  PubMed Central  Google Scholar 

Laurindo FR, Fernandes DC, Amanso AM, Lopes LR, Santos CX (2008) Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases. Antioxid Redox Signal 10(6):1101–1113. https://doi.org/10.1089/ars.2007.2011

CAS  Article  PubMed  Google Scholar 

Hahm E, Li J, Kim K, Huh S, Rogelj S, Cho J (2013) Extracellular protein disulfide isomerase regulates ligand-binding activity of alphaMbeta2 integrin and neutrophil recruitment during vascular inflammation. Blood 121(19):3789–3800. https://doi.org/10.1182/blood-2012-11-467985

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou J, Wu Y, Wang L, Rauova L, Hayes VM, Poncz M, Essex DW (2015) The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. J Clin Invest 125(12):4391–4406. https://doi.org/10.1172/JCI80319

Article  PubMed  PubMed Central  Google Scholar 

Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231):887–891. https://doi.org/10.1038/nature07619

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D’Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2011) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7(1):89–104. https://doi.org/10.1038/nprot.2011.435

CAS  Article  PubMed  Google Scholar 

Chen GF, Sudhahar V, Youn SW, Das A, Cho J, Kamiya T, Urao N, McKinney RD, Surenkhuu B, Hamakubo T, Iwanari H, Li S, Christman JW, Shantikumar S, Angelini GD, Emanueli C, Ushio-Fukai M, Fukai T (2015) Copper transport protein antioxidant-1 promotes inflammatory neovascularization via chaperone and transcription factor function. Sci Rep 5:14780. https://doi.org/10.1038/srep14780

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, Alexander RW (2005) Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111(18):2347–2355. https://doi.org/10.1161/01.CIR.0000164261.62586.14

CAS  Article  PubMed  Google Scholar 

Urao N, Sudhahar V, Kim SJ, Chen GF, McKinney RD, Kojda G, Fukai T, Ushio-Fukai M (2013) Critical role of endothelial hydrogen peroxide in post-ischemic neovascularization. PLoS ONE 8(3):e57618. https://doi.org/10.1371/journal.pone.0057618

CAS  Article  PubMed  PubMed Central  Google Scholar 

Das A, Sudhahar V, Chen GF, Kim HW, Youn SW, Finney L, Vogt S, Yang J, Kweon J, Surenkhuu B, Ushio-Fukai M, Fukai T (2016) Endothelial antioxidant-1: a key mediator of copper-dependent wound healing in vivo. Sci Rep 6:33783. https://doi.org/10.1038/srep33783

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chabot S, Jabrane-Ferrat N, Bigot K, Tabiasco J, Provost A, Golzio M, Noman MZ, Giustiniani J, Bellard E, Brayer S, Aguerre-Girr M, Meggetto F, Giuriato S, Malecaze F, Galiacy S, Jais JP, Chose O, Kadouche J, Chouaib S, Teissie J, Abitbol M, Bensussan A, Le Bouteiller P (2011) A novel antiangiogenic and vascular normalization therapy targeted against human CD160 receptor. J Exp Med 208(5):973–986. https://doi.org/10.1084/jem.20100810

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oshikawa J, Kim SJ, Furuta E, Caliceti C, Chen GF, McKinney RD, Kuhr F, Levitan I, Fukai T, Ushio-Fukai M (2012) Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 302(3):H724-732. https://doi.org/10.1152/ajpheart.00739.2011

CAS  Article  PubMed  Google Scholar 

Oshikawa J, Urao N, Kim HW, Kaplan N, Razvi M, McKinney R, Poole LB, Fukai T, Ushio-Fukai M (2010) Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS ONE 5(4):e10189. https://doi.org/10.1371/journal.pone.0010189

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM, Chen J (2015) Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol 35(7):1299–1313. https://doi.org/10.1128/MCB.00306-14

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ash D, Sudhahar V, Youn SW, Okur MN, Das A, O’Bryan JP, McMenamin M, Hou Y, Kaplan JH, Fukai T, Ushio-Fukai M (2021) The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun 12(1):3091. https://doi.org/10.1038/s41467-021-23408-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R, Fukai T, Ushio-Fukai M (2008) Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103(2):212–220. https://doi.org/10.1161/CIRCRESAHA.108.176230

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif