Hypothalamic volume and asymmetry in the pediatric population: a retrospective MRI study

Baroncini M, Jissendi P, Balland E et al (2012) MRI atlas of the human hypothalamus. Neuroimage 59:168–180. https://doi.org/10.1016/j.neuroimage.2011.07.013

Article  PubMed  Google Scholar 

Billot B, Bocchetta M, Todd E et al (2020) Automated segmentation of the hypothalamus and associated subunits in brain MRI. Neuroimage. https://doi.org/10.1016/J.NEUROIMAGE.2020.117287

Article  PubMed  Google Scholar 

Chen Z, Chen X, Liu M et al (2019) Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front Neurol. https://doi.org/10.3389/fneur.2019.00606

Article  PubMed  PubMed Central  Google Scholar 

Eiholzer U, Bachmann S, L’Allemand D (2000) Is there growth hormone deficiency in prader-willi syndrome? Horm Res Paediatr 53:44–52. https://doi.org/10.1159/000023533

CAS  Article  Google Scholar 

Ferna A, Kruijver FP, Fodor M, Swaab DF (2000) Sex differences in the distribution of androgen receptors in the human hypothalamus. J Comp Neurol 425:422–435. https://doi.org/10.1002/1096-9861

Article  Google Scholar 

Gabery S, Georgiou-Karistianis N, Lundh SH et al (2015) Volumetric analysis of the hypothalamus in huntington disease using 3T MRI: the IMAGE-HD study. PLoS ONE. https://doi.org/10.1371/journal.pone.0117593

Article  PubMed  PubMed Central  Google Scholar 

Gerendai I, Rotsztejn W, Marchetti B et al (1978) Unilateral ovariectomy-induced luteinizing hormone-releasing hormone content changes in the two halves of the mediobasal hypothalamus. Neurosci Lett 9:333–336. https://doi.org/10.1016/0304-3940(78)90204-5

CAS  Article  PubMed  Google Scholar 

Giedd JN, Snell JW, Lange N et al (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560. https://doi.org/10.1093/cercor/6.4.551

CAS  Article  PubMed  Google Scholar 

Gilmore JH, Shi F, Woolson SL et al (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22:2478–2485. https://doi.org/10.1093/cercor/bhr327

Article  PubMed  Google Scholar 

Goldstein JM, Seidman LJ, Horton NJ et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497. https://doi.org/10.1093/cercor/11.6.490

CAS  Article  PubMed  Google Scholar 

Goldstein JM, Seidman LJ, Makris N et al (2007) Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry 61:935–945. https://doi.org/10.1016/j.biopsych.2006.06.027

CAS  Article  PubMed  Google Scholar 

Ha J, Cohen JI, Tirsi A, Convit A (2013) Association of obesity-mediated insulin resistance and hypothalamic volumes: possible sex differences. Dis Markers 35:249–259. https://doi.org/10.1155/2013/531736

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hulshoff Pol HE, Cohen-Kettenis PT, Van Haren NEM et al (2006) Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure. Eur J Endocrinol. https://doi.org/10.1530/eje.1.02248

Article  Google Scholar 

Kiss DS, Toth I, Jocsak G et al (2020) Metabolic lateralization in the hypothalamus of male rats related to reproductive and satiety states. Reprod Sci 27:1197–1205. https://doi.org/10.1007/S43032-019-00131-3

CAS  Article  PubMed  Google Scholar 

Klomp A, Koolschijn PCMP, Hulshoff Pol HE et al (2012) Hypothalamus and pituitary volume in schizophrenia: a structural MRI study. Int J Neuropsychopharmacol 15:281–288. https://doi.org/10.1017/S1461145711000794

Article  PubMed  Google Scholar 

Koolschijn PCMP, van Haren NEM, Hulshoff Pol HE, Kahn RS (2008) Hypothalamus volume in twin pairs discordant for schizophrenia. Eur Neuropsychopharmacol 18:312–315. https://doi.org/10.1016/j.euroneuro.2007.12.004

CAS  Article  PubMed  Google Scholar 

Makris N, Swaab DF, van der Kouwe A et al (2013) Volumetric parcellation methodology of the human hypothalamus in neuroimaging: normative data and sex differences. Neuroimage 69:1–10. https://doi.org/10.1016/j.neuroimage.2012.12.008

Article  PubMed  Google Scholar 

Mori S, Wu D, Ceritoglu C et al (2016) MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service. Comput Sci Eng 18:21–35. https://doi.org/10.1109/MCSE.2016.93

Article  Google Scholar 

Neudorfer C, Germann J, Elias GJB et al (2020) A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci Data. https://doi.org/10.1038/S41597-020-00644-6

Article  PubMed  PubMed Central  Google Scholar 

Nieuwenhuys R, Voogd J, Van Huijzen C (2008) The human central nervous system. Springer, Berlin

Book  Google Scholar 

Østby Y, Tamnes CK, Fjell AM et al (2009) Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci 29:11772–11782. https://doi.org/10.1523/JNEUROSCI.1242-09.2009

CAS  Article  PubMed  PubMed Central  Google Scholar 

Overeem S, Van Vliet JA, Lammers GJ et al (2002) The hypothalamus in episodic brain disorders. Lancet Neurol 1:437–444

Article  Google Scholar 

Peper JS, Brouwer RM, Schnack HG et al (2009) Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology 34:332–342. https://doi.org/10.1016/j.psyneuen.2008.09.012

CAS  Article  PubMed  Google Scholar 

Peper JS, Brouwer RM, van Leeuwen M et al (2010) HPG-axis hormones during puberty: a study on the association with hypothalamic and pituitary volumes. Psychoneuroendocrinology 35:133–140. https://doi.org/10.1016/j.psyneuen.2009.05.025

CAS  Article  PubMed  Google Scholar 

Saper CB, Lowell BB (2014) The hypothalamus. Curr Biol 24:R1111–R1116. https://doi.org/10.1016/j.cub.2014.10.023

CAS  Article  PubMed  Google Scholar 

Schindler S, Schönknecht P, Schmidt L et al (2013) Development and evaluation of an algorithm for the computer-assisted segmentation of the human hypothalamus on 7-Tesla magnetic resonance images. PLoS ONE. https://doi.org/10.1371/journal.pone.0066394

Article  PubMed  PubMed Central  Google Scholar 

Sparks DL, Hunsaker JC (1991) Sudden infant death syndrome: altered aminergic-cholinergic synaptic markers in hypothalamus. J Child Neurol 6:335–339. https://doi.org/10.1177/088307389100600409

CAS  Article  PubMed  Google Scholar 

Swaab DF (2006) The human hypothalamus in metabolic and episodic disorders. Prog Brain Res 153:3–45

CAS  Article  Google Scholar 

Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115. https://doi.org/10.1126/science.3992248

CAS  Article  PubMed  Google Scholar 

Swaab DF, Hofman MA (1995) Sexual differentiation of the human hypothalamus in relation to gender and sexual orientation. Trends Neurosci 18:264–270

CAS  Article  Google Scholar 

Swaab DF, Gooren LJG, Hofman MA (1992) The human hypothalamus in relation to gender and sexual orientation. Prog Brain Res 93:205–219. https://doi.org/10.1016/S0079-6123(08)64573-2

CAS  Article  PubMed  Google Scholar 

Tang X, Crocetti D, Kutten K et al (2015) Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles. Front Neurosci. https://doi.org/10.3389/FNINS.2015.00061

Article  PubMed  PubMed Central  Google Scholar 

Terlevic R, Isola M, Ragogna M et al (2013) Decreased hypothalamus volumes in generalized anxiety disorder but not in panic disorder. J Affect Disord 146:390–394. https://doi.org/10.1016/j.jad.2012.09.024

Article  PubMed  Google Scholar 

Tognin S, Rambaldelli G, Perlini C et al (2012) Enlarged hypothalamic volumes in schizophrenia. Psychiatry Res 204:75–81. https://doi.org/10.1016/j.pscychresns.2012.10.006

Article  PubMed  Google Scholar 

Toth I, Kiss DS, Goszleth G et al (2014) Hypothalamic sidedness in mitochondrial metabolism: new perspectives. Reprod Sci 21:1492–1498. https://doi.org/10.1177/1933719114530188

CAS  Article  PubMed  Google Scholar 

Toth I, Kiss DS, Jocsak G et al (2015) Estrogen- and satiety state-dependent metabolic lateralization in the hypothalamus of female rats. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0137462

Article  PubMed  PubMed Central  Google Scholar 

Wu D, Ma T, Ceritoglu C et al (2016) Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI. Neuroimage 125:120–130. https://doi.org/10.1016/J.NEUROIMAGE.2015.10.042

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif