Type 2 alveolar epithelial cell-derived circulating extracellular vesicle-encapsulated surfactant protein C as a mediator of cardiac inflammation in COVID-19

Kanduc D, Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin Immunol. 2020;215: 108426.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The Role of Pulmonary Surfactants in the Treatment of Acute Respiratory Distress Syndrome in COVID-19. Front Pharmacol Frontiers Media SA. 2021;12: 698905.

CAS  Google Scholar 

Allaerts W. Biophysical parameters affecting lung surfactant function, surface tension and the transition from aerosol to droplet exhalation (in relation to COVID-19 infection. J Phys Conf Ser. 2021;1730:012059.

CAS  Article  Google Scholar 

Wu Z, Zhang Z, Wang X, Zhang J, Ren C, Li Y, et al. Palmitoylation of SARS-CoV-2 S protein is essential for viral infectivity. Signal Transduct Target Ther. 2021;1:6.

Google Scholar 

Tsuji K, Yamada S, Hirai K, Asakura H, Kanda Y. Development of alveolar and airway cells from human ips cells: toward sars-cov-2 research and drug toxicity testing. J Toxicol Sci. 2021;46:425–35.

CAS  PubMed  Article  Google Scholar 

Dushianthan A, Clark H, Madsen J, Mogg R, Matthews L, Berry L, et al. Nebulised surfactant for the treatment of severe COVID-19 in adults (COV-Surf): a structured summary of a study protocol for a randomized controlled trial. Trials BioMed Central Ltd. 2020;21:1–3.

Google Scholar 

Bernhard W. Lung surfactant: function and composition in the context of development and respiratory physiology. Ann Anat Germany. 2016;208:146–50.

Article  Google Scholar 

Sturrock A, Zimmerman E, Helms M, Liou TG, Paine R. Hypoxia induces expression of angiotensin-converting enzyme II in alveolar epithelial cells: implications for the pathogenesis of acute lung injury in COVID-19. Physiol Rep. 2021;9(9): e14854.

CAS  PubMed  PubMed Central  Article  Google Scholar 

McVey MJ, Maishan M, Blokland KEC, Bartlett N, Kuebler WM. Extracellular vesicles in lung health, disease, and therapy. Am J Physiol - Lung Cell Mol Physiol. 2019;316:L977–89.

CAS  PubMed  Article  Google Scholar 

Mathew T, Sarada SKS. Intonation of Nrf2 and Hif1-α pathway by curcumin prophylaxis: a potential strategy to augment survival signaling under hypoxia. Respir Physiol Neurobiol. 2018;258:12–24.

CAS  PubMed  Article  Google Scholar 

Moon H-G, Cao Y, Yang J, Lee JH, Choi HS, Jin Y. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death Dis. 2015;6:e2016–e2016.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mohning MP, Thomas SM, Barthel L, Mould KJ, McCubbrey AL, Frasch SC, et al. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires merTK Am J Physiol - Lung Cell Mol Physiol. Am Physiol Soc. 2018;314(1):L69-82.

Google Scholar 

Kwon Y, Nukala SB, Srivastava S, Miyamoto H, Ismail NI, Jousma J, et al. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020;11:514.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021;50:107300.

CAS  PubMed  Article  Google Scholar 

Haussner W, DeRosa AP, Haussner D, Tran J, Torres-Lavoro J, Kamler J, et al. COVID-19 associated myocarditis: a systematic review. Am J Emerg Med. 2022;51:150–5.

PubMed  Article  Google Scholar 

Kogan EA, Kukleva AD, Berezovskiy YS, Blagova OV, Zharkov NV, Ainetdinova DK, et al. Clinical and morphological characteristics of sars-cov-2-related myocarditis proven by the presence of viral rna and proteins in myocardial tissue. Arkh Patol. 2021;83:5–13.

CAS  PubMed  Article  Google Scholar 

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA - J Am Med Assoc. 2020;323:1061–9.

CAS  Article  Google Scholar 

Perrucci GL, Sommariva E, Ricci V, Songia P, D’Alessandra Y, Poggio P, et al. Presence of sars-cov-2 nucleoprotein in cardiac tissues of donors with negative covid-19 molecular tests. Diagnostics. 2021;11:731.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Navarro A, Molins L, Marrades RM, Moises J, Viñolas N, Morales S, et al. Exosome analysis in tumor-draining pulmonary vein identifies NSCLC patients with higher risk of relapse after curative surgery. Cancers (Basel). 2019;11:249.

CAS  PubMed Central  Article  Google Scholar 

Krishnamachary B, Cook C, Kumar A, Spikes L, Chalise P, Dhillon NK. Extracellular vesicle-mediated endothelial apoptosis and EV-associated proteins correlate with COVID-19 disease severity. J Extracell Vesicles. 2021;10: e12117.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lam SM, Zhang C, Wang Z, Ni Z, Zhang S, Yang S, et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat Metab. 2021;3:909–22.

CAS  PubMed  Article  Google Scholar 

Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, et al. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci U S A. 2006;103:14495–500.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zuin M, Rigatelli G, Bilato C, Zuliani G, Roncon L. Heart failure as a complication of COVID-19 infection: systematic review and meta-analysis. Acta Cardiol Taylor Francis Ltd. 2021;77:1–7.

Google Scholar 

Li Y, Fang L, Zhu S, Xie Y, Wang B, He L, et al. Echocardiographic characteristics and outcome in patients with covid-19 infection and underlying cardiovascular disease. Front Cardiovasc Med. 2021;16(8): 642973.

Article  CAS  Google Scholar 

Xu N, Shao Y, Ye K, Qu Y, Memet O, He D, et al. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhal Toxicol Taylor Francis. 2019;31:52–60.

CAS  Article  Google Scholar 

Katsura H, Sontake V, Tata A, Kobayashi Y, Edwards CE, Heaton BE, et al. Human lung stem cell-based alveolospheres provide insights into sars-cov-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020;27:890-904.e8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3): e14726.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, et al. A molecular single-cell lung atlas of lethal COVID-19. Nature. 2021;595:114–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tian M, Liu W, Li X, Zhao P, Shereen MA, Zhu C, et al. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct Target Ther. 2021;6:308.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang J, Hume AJ, Abo KM, Werder RB, Villacorta-Martin C, Alysandratos KD, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell Elsevier. 2020;27:962-973.e7.

CAS  Article  Google Scholar 

Liu Z, Zhu D, Yu F, Yang M, Huang D, Ji Z, et al. Exosomal miR-17-3p alleviates programmed necrosis in cardiac ischemia/reperfusion injury by regulating timp3 expression. Oxid Med Cell Longev. 2022;2022:2785113.

PubMed  PubMed Central  Google Scholar 

Sun XC, Liu Y, Wang J, Zhang M, Wang M. Cardioprotection of M2 macrophages-derived exosomal microRNA-24-3p/Tnfsf10 axis against myocardial injury after sepsis. Mol Immunol. 2022;141:309–17.

CAS  PubMed  Article  Google Scholar 

Valkov N, Das A, Tucker NR, Li G, Salvador AM, Chaffin MD, et al. SnRNA sequencing defines signaling by RBC-derived extracellular vesicles in the murine heart. Life Sci Alliance. 2021;4: e202101048.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang B, Cao C, Han D, Bai J, Guo J, Guo Q, et al. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair. Biomed Pharmacother. 2021;142: 112056.

CAS  PubMed  Article  Google Scholar 

Crewe C, Funcke J-B, Li S, Joffin N, Gliniak CM, Ghaben AL, et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 2021;33:1853-1868.e11.

CAS  PubMed  Article  Google Scholar 

Xu Y, Chen J, Wang M, Yu R, Zou W, Shen W. Mechanism of lncRNA-ANRIL/miR-181b in autophagy of cardiomyocytes in mice with uremia by targeting ATG5. PLoS One. 2021;16:6734.

Google Scholar 

Atipimonpat A, Siwaponanan P, Khuhapinant A, Svasti S, Sukapirom K, Khowawisetsut L, et al. Extracellular vesicles from thalassemia patients carry iron-containing ferritin and hemichrome that promote cardiac cell proliferation. Ann Hematol. 2021;100:1929–46.

CAS  PubMed  Article  Google Scholar 

Carrozzo A, Casieri V, Di Silvestre D, Brambilla F, De Nitto E, Sardaro N, et al. Plasma exosomes characterization reveals a perioperative protein signature in older patients undergoing different types of on-pump cardiac surgery. GeroSci. 2021;43:773–89.

CAS  Article  Google Scholar 

Li J, Salvador AM, Li G, Valkov N, Ziegler O, Yeri A, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res. 2021;128:E1-23.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif