Palladium-catalysed construction of butafulvenes

Wang, M. & Shi, Z. Methodologies and strategies for selective borylation of C–Het and C–C bonds. Chem. Rev. 120, 7348–7398 (2020).

CAS  PubMed  Article  Google Scholar 

Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C–O cleavage. Chem. Rev. 120, 10454–10515 (2020).

CAS  PubMed  Article  Google Scholar 

Evano, G. & Theunissen, C. Beyond Friedel and Crafts: directed alkylation of C–H bonds in arenes. Angew. Chem. Int. Ed. 58, 7202–7236 (2019).

CAS  Article  Google Scholar 

Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

CAS  PubMed  Article  Google Scholar 

Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

CAS  PubMed  Article  Google Scholar 

You, S.-L. Asymmetric Dearomatization Reactions (Wiley, 2016).

Book  Google Scholar 

Raviola, C., Protti, S., Ravelli, D. & Fagnoni, M. (Hetero)aromatics from dienynes, enediynes and enyne-allenes. Chem. Soc. Rev. 45, 4364–4390 (2016).

CAS  PubMed  Article  Google Scholar 

Mortier, J. Arene Chemistry (Wiley, 2015).

Book  Google Scholar 

Li, L., Mu, X., Liu, W., Mi, Z. & Li, C.-J. Simple and efficient system for combined solar energy harvesting and reversible hydrogen storage. J. Am. Chem. Soc. 137, 7576–7579 (2015).

CAS  PubMed  Article  Google Scholar 

Chinchilla, R. & Nájera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev. 114, 1783–1826 (2014).

CAS  PubMed  Article  Google Scholar 

Wang, D.-S., Chen, Q.-A., Lu, S.-M. & Zhou, Y.-G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 112, 2557–2590 (2012).

CAS  PubMed  Article  Google Scholar 

Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012).

CAS  Article  Google Scholar 

Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).

CAS  PubMed  Article  Google Scholar 

Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

CAS  PubMed  Article  Google Scholar 

Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

CAS  PubMed  Article  Google Scholar 

Ackermann, L. Modern Arylation Methods (Wiley, 2009).

Book  Google Scholar 

Saito, S. & Yamamoto, Y. Recent advances in the transition-metal-catalyzed regioselective approaches to polysubstituted benzene derivatives. Chem. Rev. 100, 2901–2915 (2000).

CAS  PubMed  Article  Google Scholar 

Scott, A. P., Agranat, I., Biedermann, P. U., Riggs, N. V. & Radom, L. Fulvalenes, fulvenes and related molecules: an ab initio study. J. Org. Chem. 62, 2026–2038 (1997).

CAS  PubMed  Article  Google Scholar 

Neuenschwander, M. Substituent effects on π-bond delocalization of fulvenes and fulvalenes. Are fulvenes aromatic? Helv. Chim. Acta 98, 763–784 (2015).

CAS  Article  Google Scholar 

Neuenschwander, M. Low-temperature olefin syntheses in view of parent fulvenes and fulvalenes. Helv. Chim. Acta 98, 731–762 (2015).

CAS  Article  Google Scholar 

Preethalayam, P. et al. Recent advances in the chemistry of pentafulvenes. Chem. Rev. 117, 3930–3989 (2017).

CAS  PubMed  Article  Google Scholar 

Beckhaus, R. Pentafulvene complexes of group four metals: versatile organometallic building blocks. Coord. Chem. Rev. 376, 467–477 (2018).

CAS  Article  Google Scholar 

Allen, A. D. & Tidwell, T. T. Antiaromaticity in open-shell cyclopropenyl to cycloheptatrienyl cations, anions, free radicals and radical ions. Chem. Rev. 101, 1333–1348 (2001).

CAS  PubMed  Article  Google Scholar 

Wiberg, K. B. Antiaromaticity in monocyclic conjugated carbon rings. Chem. Rev. 101, 1317–1331 (2001).

CAS  PubMed  Article  Google Scholar 

Toda, F. & Garratt, P. Four-membered ring compounds containing bis(methylene)cyclobutene or tetrakis(methylene)cyclobutane moieties. Benzocyclobutadiene, benzodicyclobutadiene, biphenylene and related compounds. Chem. Rev. 92, 1685–1707 (1992).

CAS  Article  Google Scholar 

Dong, Y. et al. Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem. Commun. 31, 3255–3257 (2007).

Article  CAS  Google Scholar 

Bernstein, H. I. & Quimby, W. C. The photochemical dimerization of trans-cinnamic acid. J. Am. Chem. Soc. 65, 1845–1846 (1943).

CAS  Article  Google Scholar 

Blomquist, A. T. & Meinwald, Y. C. Synthesis of some conjugated cyclobutane polyolefins and their 1,2-cycloaddition to tetracyanoethylene. J. Am. Chem. Soc. 81, 667–672 (1959).

CAS  Article  Google Scholar 

Huntsman, W. D. & Wristers, H. J. 3,4-Dimethylenecyclobutene by thermal rearrangement of 1,5-hexadiyne. J. Am. Chem. Soc. 85, 3308–3309 (1963).

CAS  Article  Google Scholar 

Pasto, D. J. & Yang, S. H. A study of the stereochemistry of the electrocyclic ring closure of substituted bisallenes to substituted 3,4-bisalkylidenecyclobutenes. J. Org. Chem. 54, 3544–3549 (1989).

CAS  Article  Google Scholar 

Huntsman, W. D. & Wristers, H. J. Thermal rearrangement of 1,5-hexadiyne and related compounds. J. Am. Chem. Soc. 89, 342–347 (1967).

CAS  Article  Google Scholar 

Alcaide, B., Almendros, P. & Aragoncillo, C. Exploiting [2 + 2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev. 39, 783–816 (2010).

CAS  PubMed  Article  Google Scholar 

Alcaide, B., Almendros, P. & Aragoncillo, C. Cyclization reactions of bis(allenes) for the synthesis of polycarbo(hetero)cycles. Chem. Soc. Rev. 43, 3106–3135 (2014).

CAS  PubMed  Article  Google Scholar 

Kitagaki, S., Inagaki, F. & Mukai, C. [2 + 2 + 1] cyclization of allenes. Chem. Soc. Rev. 43, 2956–2978 (2014).

CAS  PubMed  Article  Google Scholar 

López, F. & Mascareñas, J. L. [4 + 2] and [4 + 3] catalytic cycloadditions of allenes. Chem. Soc. Rev. 43, 2904–2915 (2014).

PubMed  Article  Google Scholar 

Lledó, A., Pla-Quintana, A. & Roglans, A. Allenes, versatile unsaturated motifs in transition-metal-catalysed [2 + 2 + 2] cycloaddition reactions. Chem. Soc. Rev. 45, 2010–2023 (2016).

PubMed  Article  Google Scholar 

Mascareñas, J. L., Varela, I. & López, F. Allenes and derivatives in gold(I)- and platinum(II)-catalyzed formal cycloadditions. Acc. Chem. Res. 52, 465–479 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Pasto, D. J. & Mitra, D. K. Synthesis of 3,4-bis(alkylidene)cyclobutenes by the reductive dimerization of propargyl chlorides. J. Org. Chem. 47, 1381–1382 (1982).

CAS  Article  Google Scholar 

Pasto, D. J. & Huang, N.-Z. Electrocyclization and cyclooligomerization reactions of 2,7-dimethyl-2,3,5,6-octatetraene with Ni(0) and Ni(II) complexes. J. Org. Chem. 50, 4465–4467 (1985).

CAS  Article  Google Scholar 

Ito, H., Sasaki, Y. & Sawamura, M. Copper(I)-catalyzed substitution of propargylic carbonates with diboron: selective synthesis of multisubstituted allenylboronates. J. Am. Chem. Soc. 130, 15774–15775 (2008).

CAS  PubMed  Article  Google Scholar 

Zhao, T. S., Yang, Y., Lessing, T. & Szabo, K. J. Borylation of propargylic substrates by bimetallic catalysis. Synthesis of allenyl, propargylic and butadienyl Bpin derivatives. J. Am. Chem. Soc. 136, 7563–7566 (2014).

CAS  PubMed  Article  Google Scholar 

Zhao, J. & Szabó, K. J. Catalytic borylative opening of propargyl cyclopropane, epoxide, aziridine and oxetane substrates: ligand controlled synthesis of allenyl boronates and alkenyl diboronates. Angew. Chem. Int. Ed. 55, 1502–1506 (2016).

CAS  Article  Google Scholar 

Mao, L., Szabo, K. J. & Marder, T. B. Synthesis of benzyl-, allyl- and allenyl-boronates via copper-catalyzed borylation of alcohols. Org. Lett. 19, 1204–1207 (2017).

CAS  PubMed  Article  Google Scholar 

Lü, B. et al. 2,6-Diisopropoxyphenyl(dicyclohexyl)phosphine: a new ligand for palladium-catalyzed amination reactions of aryl chlorides with potassium hydroxide as the base. Adv. Synth. Catal. 353, 100–112 (2011).

Article 

留言 (0)

沒有登入
gif