A multifaceted gradient in human cerebellum of structural and functional development

Moore, D. M., D’Mello, A. M., McGrath, L. M. & Stoodley, C. J. The developmental relationship between specific cognitive domains and grey matter in the cerebellum. Dev. Cogn. Neurosci. 24, 1–11 (2017).

Article  Google Scholar 

King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).

CAS  Article  Google Scholar 

Fatemi, S. H. et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11, 777–807 (2012).

Article  Google Scholar 

D’Mello, A. M. & Stoodley, C. J. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 9, 408 (2015).

PubMed  PubMed Central  Google Scholar 

Wang, S. S.-H., Kloth, A. D. & Badura, A. The cerebellum, sensitive periods, and autism. Neuron 83, 518–532 (2014).

CAS  Article  Google Scholar 

Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).

CAS  Article  Google Scholar 

Wagstyl, K., Ronan, L., Goodyer, I. M. & Fletcher, P. C. Cortical thickness gradients in structural hierarchies. Neuroimage 111, 241–250 (2015).

Article  Google Scholar 

Gomez, J. et al.Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355, 68–71 (2017).

CAS  Article  Google Scholar 

Palay, S. & Chan-Palay, V. Cerebellar cortex: cytology and organization (Springer, 1974).

Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).

Article  Google Scholar 

Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).

Article  Google Scholar 

Han, S., Carass, A., He, Y. & Prince, J. L. Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization. Neuroimage 218, 116819 (2020).

Article  Google Scholar 

Klein, A. P., Ulmer, J. L., Quinet, S. A., Mathews, V. & Mark, L. P. Nonmotor functions of the cerebellum: an introduction. AJNR Am. J. Neuroradiol. 37, 1005–1009 (2016).

CAS  Article  Google Scholar 

Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).

CAS  Article  Google Scholar 

Flechsig, P. Developmental (myelongenetic) localisation of the cerebral cortex in the human subject. Lancet 158, 1027–1030 (1901).

Article  Google Scholar 

Elston, G. N. & Fujita, I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front. Neuroanat. 8, 78 (2014).

PubMed  PubMed Central  Google Scholar 

Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity.J. Neurophysiol 106, 2322–2345 (2011).

Article  Google Scholar 

Guell, X., Schmahmann, J. D., Gabrieli, J. & Ghosh, S. S. Functional gradients of the cerebellum. eLife 7, e36652 (2018).

Article  Google Scholar 

Mezer, A. et al. Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat. Med. 19, 1667–1672 (2013).

CAS  Article  Google Scholar 

Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

CAS  Article  Google Scholar 

Etxeberria, A. et al. Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity. J. Neurosci. 36, 6937–6948 (2016).

CAS  Article  Google Scholar 

Zuo, X. N. et al. The oscillating brain: complex and reliable. Neuroimage 49, 1432–1445 (2010).

Article  Google Scholar 

Zou, Q. H. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172, 137–141 (2008).

Article  Google Scholar 

Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).

CAS  Article  Google Scholar 

Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).

Article  Google Scholar 

Somerville, L. H. et al. The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. NeuroImage 183, 456–468 (2018).

Article  Google Scholar 

Harms, M. P. et al. Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. NeuroImage 183, 972–984 (2018).

Article  Google Scholar 

Diedrichsen, J. A spatially unbiased atlas template of the human cerebellum. NeuroImage 33, 127–138 (2006).

Article  Google Scholar 

Diedrichsen, J. & Zotow, E. Surface-based display of volume-averaged cerebellar imaging data. PLoS ONE 10, e0133402 (2015).

Article  Google Scholar 

Falconer, D. S. & Mackay, T. Introduction to quantitative genetics. (Pearson, Prentice Hall, 2009)

Jacquard, A. Heritability: one word, three concepts. Biometrics 39, 465 (1983).

CAS  Article  Google Scholar 

Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

CAS  Article  Google Scholar 

Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem 75, 4646–4658 (2003).

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif