Spiro rhodamine-coumarin compact electron donor–acceptor dyads: synthesis and spin–orbit charge transfer intersystem crossing

Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). Bodipy dyes in photodynamic therapy. Chemical Society Reviews, 42, 77–88. https://doi.org/10.1039/C2CS35216H

CAS  Article  PubMed  Google Scholar 

Zhao, J., Wu, W., Sun, J., & Guo, S. (2013). Triplet photosensitizers: From molecular design to applications. Chemical Society Reviews, 42, 5323–5351. https://doi.org/10.1039/C3CS35531D

CAS  Article  PubMed  Google Scholar 

Zhao, J., Xu, K., Yang, W., Wang, Z., & Zhong, F. (2015). The triplet excited state of bodipy: Formation, modulation and application. Chemical Society Reviews, 44, 8904–8939. https://doi.org/10.1039/C5CS00364D

CAS  Article  PubMed  Google Scholar 

Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews, 113, 5322–5363. https://doi.org/10.1021/cr300503r

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hari, D. P., & König, B. (2014). Synthetic applications of eosin Y in photoredox catalysis. Chemical Communications, 50, 6688–6699. https://doi.org/10.1039/C4CC00751D

CAS  Article  PubMed  Google Scholar 

Shi, L., & Xia, W. (2012). Photoredox functionalization of C-H bonds adjacent to a nitrogen tom. Chemical Society Reviews, 41, 7687–7697. https://doi.org/10.1039/C2CS35203F

CAS  Article  PubMed  Google Scholar 

Tian, J., Zhou, J., Shen, Z., Ding, L., Yu, J.-S., & Ju, H. (2015). A ph-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chemical Science, 6, 5969–5977. https://doi.org/10.1039/C5SC01721A

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nguyen, V.-N., Qi, S., Kim, S., Kwon, N., Kim, G., Yim, Y., Park, S., & Yoon, J. (2019). An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia. Journal of the American Chemical Society, 141, 16243–16248. https://doi.org/10.1021/jacs.9b09220

CAS  Article  PubMed  Google Scholar 

Stacey, O. J., & Pope, S. J. A. (2013). New avenues in the design and potential application of metal complexes for photodynamic therapy. RSC Advances, 3, 25550–25564. https://doi.org/10.1039/C3RA45219K

CAS  Article  Google Scholar 

Xu, C.-H., Sun, W., Zhang, C., Zhou, C., Fang, C.-J., & Yan, C.-H. (2009). Luminescence switching of a cyclometalated iridium(III) complex through a redox-active tetrathiafulvalene-based ligand. Chemistry—A European Journal, 15, 8717–8721. https://doi.org/10.1002/chem.200901483.

Fernández-Moreira, V., Thorp-Greenwood, F. L., & Coogan, M. P. (2010). Application of d6 transition metal complexes in fluorescence cell imaging. Chemical Communications, 46, 186–202. https://doi.org/10.1039/B917757D

Article  PubMed  Google Scholar 

Feng, Y., Cheng, J., Zhou, L., Zhou, X., & Xiang, H. (2012). Ratiometric optical oxygen sensing: A review in respect of material design. The Analyst, 137, 4885–4901. https://doi.org/10.1039/C2AN35907C

CAS  Article  PubMed  Google Scholar 

Dai, F.-R., Zhan, H.-M., Liu, Q., Fu, Y.-Y., Li, J.-H., Wang, Q.-W., Xie, Z., Wang, L., Yan, F., & Wong, W.-Y. (2012). Platinum(II)–bis(aryleneethynylene) complexes for solution-processible molecular bulk heterojunction solar cells. Chemistry—A European Journal, 18, 1502–1511. https://doi.org/10.1002/chem.201102598.

Singh-Rachford, T. N., & Castellano, F. N. (2010). Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews, 254, 2560–2573. https://doi.org/10.1016/j.ccr.2010.01.003

CAS  Article  Google Scholar 

Zhao, J., Ji, S., & Guo, H. (2011). Triplet–triplet annihilation based upconversion: From triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Advances, 1, 937–950. https://doi.org/10.1039/C1RA00469G

CAS  Article  Google Scholar 

Monguzzi, A., Tubino, R., Hoseinkhani, S., Campione, M., & Meinardi, F. (2012). Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives. Physical Chemistry Chemical Physics, 14, 4322–4332. https://doi.org/10.1039/C2CP23900K

CAS  Article  PubMed  Google Scholar 

Simon, Y. C., Weder, C. (2012). Low-power photon upconversion through triplet–triplet annihilation in polymers. Journal of Materials Chemistry, 22, 20817–20830. https://doi.org/10.1039/C2JM33654E.

N. J. Turro, V. R., J. C. Scaiano. (2009). Principles of molecular photochemistry: An introduction; University Science Books: Sausalito, California.

Bröring, M., Krüger, R., Link, S., Kleeberg, C., Köhler, S., Xie, X., Ventura, B., & Flamigni, L. (2008). Bis(BF2)-2,2’-bidipyrrins (BisBODIPYs): highly fluorescent bodipy dimers with large stokes shifts. Chemistry—A European Journal, 14, 2976–2983. https://doi.org/10.1002/chem.200701912.

Ventura, B., Marconi, G., Bröring, M., Krüger, R., & Flamigni, L. (2009). Bis(BF2)-2,2’-bidipyrrins, a class of bodipy dyes with new spectroscopic and photophysical properties. New Journal of Chemistry, 33, 428–438. https://doi.org/10.1039/B813638F

CAS  Article  Google Scholar 

Ziessel, R., Allen, B. D., Rewinska, D. B., & Harriman, A. (2009). Selective triplet-state formation during charge recombination in a fullerene/bodipy molecular dyad (bodipy = borondipyrromethene). Chemistry—A European Journal, 15, 7382–7393. https://doi.org/10.1002/chem.200900440.

Wu, W., Zhao, J., Sun, J., & Guo, S. (2012). Light-harvesting fullerene dyads as organic triplet photosensitizers for triplet–triplet annihilation upconversions. The Journal of Organic Chemistry, 77, 5305–5312. https://doi.org/10.1021/jo300613g

CAS  Article  PubMed  Google Scholar 

Huang, L., Yu, X., Wu, W., & Zhao, J. (2012). Styryl bodipy-C60 dyads as efficient heavy-atom-free organic triplet photosensitizers. Organic Letters, 14, 2594–2597. https://doi.org/10.1021/ol3008843

CAS  Article  PubMed  Google Scholar 

Liu, Y., & Zhao, J. (2012). Visible light-harvesting perylenebisimide–fullerene (c60) dyads with bidirectional “ping-pong” energy transfer as triplet photosensitizers for photooxidation of 1,5-dihydroxynaphthalene. Chemical Communications, 48, 3751–3753. https://doi.org/10.1039/C2CC30345K

CAS  Article  PubMed  Google Scholar 

Wang, Z., Zhao, J., Barbon, A., Toffoletti, A., Liu, Y., An, Y., Xu, L., Karatay, A., Yaglioglu, H. G., Yildiz, E. A., et al. (2017). Radical-enhanced intersystem crossing in new bodipy derivatives and application for efficient triplet–triplet annihilation upconversion. Journal of the American Chemical Society, 139, 7831–7842. https://doi.org/10.1021/jacs.7b02063

CAS  Article  PubMed  Google Scholar 

Wang, Z., Gao, Y., Hussain, M., Kundu, S., Rane, V., Hayvali, M., Yildiz, E. A., Zhao, J., Yaglioglu, H. G., & Das, R., et al. (2018). Efficient radical-enhanced intersystem crossing in an NDI-TEMPO dyad: photophysics, electron spin polarization, and application in photodynamic therapy. Chemistry—A European Journal, 24, 18663–18675. https://doi.org/10.1002/chem.201804212.

Smith, M. B., & Michl, J. (2010). Singlet fission. Chemical Reviews, 110, 6891–6936. https://doi.org/10.1021/cr1002613

CAS  Article  PubMed  Google Scholar 

Kasha, M., Rawls, H. R., & EI-Bayoumi, M. A. (1965). The exciton model in molecular spectroscopy. Pure and Applied Chemistry, 11, 371–392.

CAS  Article  Google Scholar 

Gibbons, D. J., Farawar, A., Mazzella, P., Leroy-Lhez, S., & Williams, R. M. (2020). Making triplets from photo-generated charges: Observations, mechanisms and theory. Photochemical & Photobiological Sciences, 19, 136–158. https://doi.org/10.1039/C9PP00399A

CAS  Article  Google Scholar 

Filatov, M. A. (2020). Heavy-atom-free bodipy photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Organic & Biomolecular Chemistry, 18, 10–27. https://doi.org/10.1039/C9OB02170A

CAS  Article  Google Scholar 

Hou, Y., Zhang, X., Chen, K., Liu, D., Wang, Z., Liu, Q., Zhao, J., & Barbon, A. (2019). Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads. Journal of Materials Chemistry C, 7, 12048–12074. https://doi.org/10.1039/C9TC04285G

CAS  Article  Google Scholar 

Levanon, H., Norris, J. R. (1978). The photoexcited triplet state and photosynthesis. Chemical Reviews 78, 185–198. https://doi.org/10.1021/cr60313a001.

Guldi, D. M. (2000). Fullerenes: Three dimensional electron acceptor materials. Chemical Communications. https://doi.org/10.1039/A907807J

Article  Google Scholar 

Kc, C. B., Lim, G. N., Nesterov, V. N., Karr, P. A., & D'Souza, F. (2014). Phenothiazine–bodipy–fullerene triads as photosynthetic reaction center models: Substitution and solvent polarity effects on photoinduced charge separation and recombination. Chemistry—A European Journal, 20, 17100–17112. https://doi.org/10.1002/chem.201404863.

Verhoeven, J. W. (2006). On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7, 40–60. https://doi.org/10.1016/j.jphotochemrev.2006.04.001

CAS  Article  Google Scholar 

Dance, Z. E. X., Mi, Q., McCamant, D. W., Ahrens, M. J., Ratner, M. A., & Wasielewski, M. R. (2006). Time-resolved epr studies of photogenerated radical ion pairs separated by p-phenylene oligomers and of triplet states resulting from charge recombination. The Journal of Physical Chemistry B, 110, 25163–25173. https://doi.org/10.1021/jp063690n

CAS  Article  PubMed  Google Scholar 

Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T., & Chow, T. J. (2006). Tuning excited-state electron transfer from an adiabatic to nonadiabatic type in donor−bridge−acceptor systems and the associated energy-transfer process. The Journal of Physical Chemistry A, 110, 12136–12144. https://doi.org/10.1021/jp063038s

CAS  Article  PubMed  Google Scholar 

Colvin, M. T., Ricks, A. B., Scott, A. M., Co, D. T., & Wasielewski, M. R. (2012). Intersystem crossing involving strongly spin exchange-coupled radical ion pairs in donor–bridge–acceptor molecules. The Journal of Physical Chemistry A, 116, 1923–1930. https://doi.org/10.1021/jp212546w

CAS  Article  PubMed  Google Scholar 

Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Savoie, H., Flanagan, K. J., Sy, C., Elisabeth, S., Telitchko, M., Laquai, F., Boyle, R. W., et al. (2017). Generation of triplet excited states via photoinduced electron transfer in meso-anthra-bodipy: Fluorogenic response toward singlet oxygen in solution and in vitro. Journal of the American Chemical Society, 139, 6282–6285. https://doi.org/10.1021/jacs.7b00551

CAS  Article  PubMed  Google Scholar 

Hu, W., Liu, M., Zhang, X.-F., Wang, Y., Wang, Y., Lan, H., & Zhao, H. (2019). Can bodipy-electron acceptor conjugates act as heavy atom-free excited triplet state and singlet oxygen photosensitizers via photoinduced charge separation-charge recombination mechanism? The Journal of Physical Chemistry C, 123, 15944–15955. https://doi.org/10.1021/acs.jpcc.9b02961

CAS  Article  Google Scholar 

Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Callaghan, S., Flanagan, K. J., Telitchko, M., Wiesner, T., Laquai, F., & Senge, M. O. (2018). Control of triplet state generation in heavy atom-free bodipy–anthracene dyads by media polarity and structural factors. Physical Chemistry Chemical Physics, 20, 8016–8031. https://doi.org/10.1039/C7CP08472B

CAS  Article  PubMed  Google Scholar 

Callaghan, S., Filatov, M. A., Savoie, H., Boyle, R. W., & Senge, M. O. (2019). In vitro cytotoxicity of a library of bodipy-anthracene and -pyrene dyads for application in photodynamic therapy. Photochemical & Photobiological Sciences, 18, 495–504. https://doi.org/10.1039/C8PP00402A

CAS  Article  Google Scholar 

Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Callaghan, S., Flanagan, K. J., Wiesner, T., Laquai, F., & Senge, M. O. (2018). Bodipy-pyrene and perylene dyads as heavy-atom-free singlet oxygen sensitizers. ChemPhotoChem, 2, 606–615. https://doi.org/10.1002/cptc.201800020

CAS  Article 

留言 (0)

沒有登入
gif