Oncolytic bacterial and viral therapies as cancer prevention and treatment options: a comprehensive review

Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European journal of pharmaceutics and biopharmaceutics. 2015;93:52-79. doi: 10.1016/j.ejpb.2015.03.018

Li Y, Atkinson K, Zhang T. Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer letters. 2017;396:103-9. doi: 10.1016/j.canlet.2017.03.008

Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nature reviews Drug discovery. 2015;14(9):642-62. doi: articles/nrd4663

Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS microbiology letters. 2019;366(12):fnz136. doi: 10.1093/femsle/fnz136

Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng K-W, Russell S. Designing and building oncolytic viruses. Future virology. 2017;12(4):193-213. doi: 10.2217/fvl-2016-0129

Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Molecular therapy. 2007;15(4):651-9. doi: 10.1038/sj.mt.6300108

Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection–possibilities for cancer treatment. Anti-Cancer Drugs. 2016;27(4):269. doi: articles/PMC4777220/

Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Frontiers in pharmacology. 2015;6:272. doi: articles/10.3389/fphar.2015.00272/full

Komor U, Bielecki P, Loessner H, Rohde M, Wolf K, Westphal K, et al. Biofilm formation by Pseudomonas aeruginosa in solid murine tumors–a novel model system. Microbes and infection. 2012;14(11):951-8. doi: 10.1016/j.micinf.2012.04.002

Jia L-J, Xu H-M, Ma D-Y, Hu Q-G, Huang X-F, Jiang W-H, et al. Enhanced therapeutic effect by combination of tumor-targeting Salmonella and endostatin in murine melanoma model. Cancer biology & therapy. 2005;4(8):840-5. doa: 10.4161/cbt.4.8.1891

Phan TX, Nguyen VH, Duong MTQ, Hong Y, Choy HE, Min JJ. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria‐mediated cancer therapy. Microbiology and immunology. 2015;59(11):664-75. doi: 10.1111/1348-0421.12333

Stern C, Kasnitz N, Kocijancic D, Trittel S, Riese P, Guzman CA, et al. Induction of CD 4+ and CD 8+ anti‐tumor effector T cell responses by bacteria mediated tumor therapy. International journal of cancer. 2015;137(8):2019-28. doi: 10.1002/ijc.29567

Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PloS one. 2009;4(8):e6692. doa: 10.1371/journal.pone.0006692

Winslow C-E, Broadhurst J, Buchanan R, Krumwiede Jr C, Rogers L, Smith GH. The families and genera of the bacteria: preliminary report of the committee of the society of american bacteriologists on characterization and classification of bacterial types. Journal of bacteriology. 1917;2(5):505. doi: 10.1128/jb.2.5.505-566.1917

Connell HC. The study and treatment of cancer by proteolytic enzymes: preliminary report. Canadian Medical Association Journal. 1935;33(4):364. doi: articles/PMC1561462/

Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer research. 1955;15(7):473-8. doi: content/15/7/473

Bahl H, Dürre P. Clostridia: Biotechnology & Medical Applications: John Wiley & Sons; 2001. doi: 10.1111/202001.&f=false

Theys J, Landuyt W, Nuyts S, Van Mellaert L, Bosmans E, Rijnders A, et al. Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunology & Medical Microbiology. 2001;30(1):37-41. doi: 10.1111/j.1574-695X.2001.tb01547.x

Diaz Jr LA, Cheong I, Foss CA, Zhang X, Peters BA, Agrawal N, et al. Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicological Sciences. 2005;88(2):562-75. doi: 10.1093/toxsci/kfi316

Dang LH, Bettegowda C, Agrawal N, Cheong I, Huso D, Frost P, et al. Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer biology & therapy. 2004;3(3):326-37. doa: 10.4161/cbt.3.3.704

Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer gene therapy. 2003;10(10):737-44. doi: articles/7700634

Tu D-G, Chang W-W, Lin S-T, Kuo C-Y, Tsao Y-T, Lee C-H. Salmonella inhibits tumor angiogenesis by downregulation of vascular endothelial growth factor. Oncotarget. 2016;7(25):37513. doi: articles/PMC5122328/

Kuan Y-D, Lee C-H. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression. Oncotarget. 2016;7(1):374. doi: articles/PMC4808005/

Yang C-J, Chang W-W, Lin S-T, Chen M-C, Lee C-H. Salmonella overcomes drug resistance in tumor through P-glycoprotein downregulation. International journal of medical sciences. 2018;15(6):574. doi: articles/PMC5930458/

Tsao Y-T, Kuo C-Y, Cheng S-P, Lee C-H. Downregulations of AKT/mTOR signaling pathway for Salmonella-mediated suppression of matrix metalloproteinases-9 expression in mouse tumor models. International journal of molecular sciences. 2018;19(6):1630. doi: 10.3390/ijms19061630

Liu F, Zhang L, Hoffman RM, Zhao M. Vessel destruction by tumor-targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle. 2010;9(22):4518-24. doa: 10.4161/cc.9.22.13744

Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2002;20(1):142. doi: articles/PMC2064865/

King I, Bermudes D, Lin S, Belcourt M, Pike J, Troy K, et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Human gene therapy. 2002;13(10):1225-33. doi: 10.1089/104303402320139005

Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nature biotechnology. 1999;17(1):37-41. doi: articles/nbt0199_37

Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer research. 2006;66(15):7647-52. doi: content/66/15/7647.short

Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss III R. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infection and immunity. 2011;79(10):4227. doi: 10.1128/IAI.05398-11

Farber J, Peterkin P. Listeria monocytogenes, a food-borne pathogen. Microbiological reviews. 1991;55(3):476-511. doi: 10.1128/mr.55.3.476-511.1991

Flickinger JC, Rodeck U, Snook AE. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines. 2018;6(3):48. doi: 10.3390/vaccines6030048

Seavey MM, Maciag PC, Al-Rawi N, Sewell D, Paterson Y. An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model. The Journal of Immunology. 2009;182(9):5537-46. doi: 10.4049/jimmunol.0803742

Wood LM, Pan Z-K, Guirnalda P, Tsai P, Seavey M, Paterson Y. Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunology, Immunotherapy. 2011;60(7):931. doi: article/10.1007/s00262-011-1002-x

Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevall A, Dadachova E, et al. Nontoxic radioactive Listeriaat is a highly effective therapy against metastatic pancreatic cancer. Proceedings of the National Academy of Sciences. 2013;110(21):8668-73. doi: content/110/21/8668.short

Singh R, Wallecha A. Cancer immunotherapy using recombinant Listeria monocytogenes: transition from bench to clinic. Human vaccines. 2011;7(5):497-505. doa: 10.4161/hv.7.5.15132

Seavey MM, Paterson Y. Antiangiogenesis immunotherapy induces epitope spreading to HER-2/neu resulting in breast tumor immunoediting. Breast Cancer: Targets and Therapy. 2009;1:19. doi: articles/PMC3011232/

Maciag PC, Seavey MM, Pan Z-K, Ferrone S, Paterson Y. Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer research. 2008;68(19):8066-75. doi: content/68/19/8066.short

Duarte C, Gudiña EJ, Lima CF, Rodrigues LR. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB express. 2014;4(1):1-12. doi: 10/24949273/

Pool‐Zobel B, Neudecker C, Domizlaff I, Ji S, Schillinger U, Rumney C, et al. Lactobacillus‐and Bifidobacterium‐mediated antigenotoxicity in the colon of rats. 1996. doa: 10.1080/01635589609514492

Yasutake N, Matsuzaki T, Kimura K, Hashimoto S, Yokokura T, Yoshikai Y. The role of tumor necrosis factor (TNF)-α in the antitumor effect of intrapleural injection of Lactobacillus casei strain Shirota in mice. Medical microbiology and immunology. 1999;188(1):9-14. doi: 10.1007/s004300050099

Hoffman RM, Yano S. Salmonella typhimurium A1-R and Cell-Cycle Decoy Therapy of Cancer. Bacterial Therapy of Cancer: Springer; 2016. p. 165-75. doi: 10.1007%2F978-1-4939-3515-4_14

Olino K, Wada S, Edil BH, Pan X, Meckel K, Weber W, et al. Tumor-associated antigen expressing Listeria monocytogenes induces effective primary and memory T-cell responses against hepatic colorectal cancer metastases. Annals of surgical oncology. 2012;19(3):597-607. doi: 10.1245/s10434-011-2037-0

Cheng W, Feng Y, Ren J, Jing D, Wang C. Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma. 2016;63(2):215-22. doi: med/26774143

Parisa A, Roya G, Mahdi R, Shabnam R, Maryam E, Malihe T. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PloS one. 2020;15(5):e0232930. doa: 10.1371/journal.pone.232930

Yao Q, Cao S, Li C, Mengesha A, Low P, Kong B, et al. Turn a diarrhoea toxin into a receptor-mediated therapy for a plethora of CLDN-4-overexpressing cancers. Biochemical and biophysical research communications. 2010;398(3):413-9. doi: 10.1016/j.bbrc.2010.06.089

Ganai S, Arenas R, Forbes N. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. British journal of cancer. 2009;101(10):1683-91. doi: articles/6605403

Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer immunology, immunotherapy. 2009;58(5):769-75. doi: article/10.1007/s00262-008-0555-9

Gunn GR, Zubair A, Peters C, Pan Z-K, Wu T-C, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. The Journal of Immunology. 2001;167(11):6471-9. doi: 10.4049/jimmunol.167.11.6471

Lemmon M, Van Zijl P, Fox M, Mauchline M, Giaccia A, Minton N, et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene therapy. 1997;4(8):791-6. doi: 10/3300468

Kim S, Castro F, Gonzalez D, Maciag P, Paterson Y, Gravekamp C. Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. British journal of cancer. 2008;99(5):741-9. doi: articles/6604526

Roberts NJ, Zhang L, Janku F, Collins A, Bai R-Y, Staedtke V, et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Science translational medicine. 2014;6(249):249ra111-249ra111. doi: 10.1126/scitranslmed.3008982

Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3975-83. doi: 10.1016/j.vaccine.2009.04.041

Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes–expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. Journal of clinical oncology. 2015;33(12):1325. doi: articles/4397277/

De Matos AL, Franco LS, McFadden G. Oncolytic viruses and the immune system: the dynamic duo. Molecular Therapy-Methods & Clinical Development. 2020;17:349-58. doi: 10.1016/j.omtm.2020.01.001

Bejarano MT, Merchan JR. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic virotherapy. 2015;4:169. doi: articles/PMC4918394/

Pikor LA, Bell JC, Diallo J-S. Oncolytic viruses: exploiting cancer's deal with the devil. Trends in cancer. 2015;1(4):266-77. doi: 10.1016/j.trecan.2015.10.004

Rezaei R, Ghaleh HEG, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, et al. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Therapy. 2021:1-14. doi: articles/s41417-021-00359-9

Alvanegh AG, Ganji SM, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, et al. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomedicine & Pharmacotherapy. 2021;140:111755. doi: 10.1016/j.biopha.2021.111755

Chaurasiya S, Chen NG, Warner SG. Oncolytic virotherapy versus cancer stem cells: A review of approaches and mechanisms. Cancers. 2018;10(4):124. doi: 10.3390/cancers10040124

Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology. 2019;8(6):e1581528. doa: 10.1080/2162402x.2019.1596006

Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, et al. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. Journal of cellular physiology. 2019;234(6):8636-46. doi: 10.1002/jcp.27850

Terrível M, Gromicho C, Matos AM. Oncolytic viruses: what to expect from their use in cancer treatment. Microbiology and immunology. 2020;64(7):477-92. doi: 10.1111/1348-0421.12753

Liu T-C, Hallden G, Wang Y, Brooks G, Francis J, Lemoine N, et al. An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumor necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Molecular therapy. 2004;9(6):786-803. doi: 10.1016/j.ymthe.2004.03.017

Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clinical cancer research. 2006;12(1):305-13. doi: 10/1/305.short

Oh E, Hong J, Kwon O-J, Yun C-O. A hypoxia-and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Scientific reports. 2018;8(1):1-13. doi: 10/s41598-018-19300-6

Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus—A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Frontiers in oncology. 2019;9:1182. doi: 10.3389/fonc.2019.01182

Niemann J, Kühnel F. Oncolytic viruses: adenoviruses. Virus Genes. 2017;53(5):700-6. doi: 10.1007/s11262-017-1488-1

Panek WK, Kane JR, Young JS, Rashidi A, Kim JW, Kanojia D, et al. Hitting the nail on the head: combining oncolytic adenovirus-mediated virotherapy and immunomodulation for the treatment of glioma. Oncotarget. 2017;8(51):89391. doi: articles/PMC5687697/

Yu B, Dong J, Wang C, Zhan Y, Zhang H, Wu J, et al. Characteristics of neutralizing antibodies to adenovirus capsid proteins in human and animal sera. Virology. 2013;437(2):118-23. doi: 10.1016/j.virol.2012.12.014

Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Human gene therapy. 2014;25(4):285-300. doi: 10.1089/hum.2013.228

Lopez-Gordo E, Denby L, Nicklin SA, Baker AH. The importance of coagulation factors binding to adenovirus: historical perspectives and implications for gene delivery. Expert opinion on drug delivery. 2014;11(11):1795-813. doa: 10.1517/17425247.2014.938637

Short JJ, Rivera AA, Wu H, Walter MR, Yamamoto M, Mathis JM, et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Molecular cancer therapeutics. 2010;9(9):2536-44. doi: 10/9/9/2536.short

Ghaleh HEG, Bolandian M, Dorostkar R, Jafari A, Pour MF. Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomedicine & Pharmacotherapy. 2020;128:110276. doi: 10.1016/j.biopha.2020.110276

Aoyama K, Kuroda S, Morihiro T, Kanaya N, Kubota T, Kakiuchi Y, et al. Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Scientific reports. 2017;7(1):1-10. doi: s41598-017-14717-x

Farrera-Sal M, Moya-Borrego L, Bazan-Peregrino M, Alemany R. Evolving status of clinical immunotherapy with oncolytic adenovirus. Clinical Cancer Research. 2021. doi: 10/11/2979.abstract

Packiam VT, Lamm DL, Barocas DA, Trainer A, Fand B, Davis III RL, et al., editors. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non–muscle-invasive bladder cancer: interim results. Urologic Oncology: Seminars and Original Investigations; 2018: Elsevier. doi: 10.1016/j.urolonc.2017.07.005

Lang FF, Conrad C, Gomez-Manzano C, Yung WA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. Journal of Clinical Oncology. 2018;36(14):1419. doi: articles/PMC6075856/

Duffy MR, Fisher KD, Seymour LW. Making oncolytic virotherapy a clinical reality: the European contribution. Human gene therapy. 2017;28(11):1033-46. doi: 10.1089/hum.2017.112

Fu X, Tao L, Zhang X. An oncolytic virus derived from type 2 herpes simplex virus has potent therapeutic effect against metastatic ovarian cancer. Cancer gene therapy. 2007;14(5):480-7. doi: articles/7701033

Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC immunology. 2018;19(1):1-11. doi: 10.1186/s12865-018-0281-9

Yun C-O. Overcoming the extracellular matrix barrier to improve intratumoral spread and therapeutic potential of oncolytic virotherapy. Current opinion in molecular therapeutics. 2008;10(4):356-61. doi: article/med/18683100

Fukuhara H, Todo T. Oncolytic herpes simplex virus type 1 and host immune responses. Current cancer drug targets. 2007;7(2):149-55. doi: 10.2174/156800907780058907

Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Human vaccines & immunotherapeutics. 2020;16(10):2389-402. doi: 10.1080/21645515.2020.1723363

Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses—interaction of virus and tumor cells in the battle to eliminate cancer. Frontiers in oncology. 2017;7:195. doi: 10.3389/fonc.2017.00195

Guse K, Cerullo V, Hemminki A. Oncolytic vaccinia virus for the treatment of cancer. Expert opinion on biological therapy. 2011;11(5):595-608. doa: 10.1517/14712598.2011.558838

Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. Journal for immunotherapy of cancer. 2019;7(1):1-21. doi: 10.1186/s40425-018-0495-7

Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Molecular Therapy. 2012;20(4):749-58. doi: 10.1038/mt.2011.276

Mejías-Pérez E, Carreño-Fuentes L, Esteban M. Development of a safe and effective vaccinia virus oncolytic vector WR-Δ4 with a set of gene deletions on several viral pathways. Molecular Therapy-Oncolytics. 2018;8:27-40. doi: 10.1016/j.omto.2017.12.002

Shin J, Hong S-O, Kim M, Lee H, Choi H, Kim J, et al. Generation of a novel oncolytic vaccinia virus using the IHD-W strain. Human Gene Therapy. 2020. doi: 10.1089/hum.2020.050

Mansfield D, Kyula J, Rosenfelder N, Chao-Chu J, Kramer-Marek G, Khan A, et al. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene therapy. 2016;23(4):357-68. doi: articles/gt20165

Goldufsky J, Sivendran S, Harcharik S, Pan M, Bernardo S, Stern RH, et al. Oncolytic virus therapy for cancer. Oncolytic Virotherapy. 2013;2:31. doi: articles/PMC4918352/

Aurelian L. Oncolytic virotherapy: the questions and the promise. Oncolytic virotherapy. 2013;2:19. doi: articles/PMC4918350/

Deng L, Fan J, Guo M, Huang B. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9. Cancer letters. 2016;372(2):251-7. doi: 10.1016/j.canlet.2016.01.025

Potts KG, Irwin CR, Favis NA, Pink DB, Vincent KM, Lewis JD, et al. Deletion of F4L (ribonucleotide reductase) in vaccinia virus produces a selective oncolytic virus and promotes anti‐tumor immunity with superior safety in bladder cancer models. EMBO molecular medicine. 2017;9(5):638-54. doi: 10.15252/emmm.201607296

Yoo SY, Jeong S-N, Kang DH, Heo J. Evolutionary cancer-favoring engineered vaccinia virus for metastatic hepatocellular carcinoma. Oncotarget. 2017;8(42):71489. doi: articles/PMC5641064/

Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature medicine. 2013;19(3):329-36. doi: articles/nm.3089

Mell LK, Brumund KT, Daniels GA, Advani SJ, Zakeri K, Wright ME, et al. Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clinical cancer research. 2017;23(19):5696-702. doi: 10/19/5696.abstract

Müller L, Berkeley R, Barr T, Ilett E, Errington-Mais F. Past, Present and Future of Oncolytic Reovirus. Cancers. 2020;12(11):3219. doi: 10.3390/cancers12113219

Clements D, Helson E, Gujar SA, Lee PW. Reovirus in cancer therapy: an evidence-based review. Oncolytic Virotherapy. 2014;3:69. doi: articles/PMC4918368/

Carew JS, Espitia CM, Zhao W, Mita MM, Mita AC, Nawrocki ST. Oncolytic reovirus inhibits angiogenesis through induction of CXCL10/IP-10 and abrogation of HIF activity in soft tissue sarcomas. Oncotarget. 2017;8(49):86769. doi: articles/PMC5689724/

Sahin E, Egger ME, McMasters KM, Zhou HS. Development of oncolytic reovirus for cancer therapy. 2013. doi: 10-8901685_35272/

Seyed-Khorrami S-M, Soleimanjahi H, Soudi S, Habibian A. MSCs loaded with oncolytic reovirus: migration and in vivo virus delivery potential for evaluating anti-cancer effect in tumor-bearing C57BL/6 mice. Cancer Cell International. 2021;21(1):1-19. doi: 10.1186/s12935-021-01848-5

Jayawardena N, Poirier JT, Burga LN, Bostina M. Virus–Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Oncolytic virotherapy. 2020;9:1. doi: articles/PMC7064293/

Berkeley RA, Steele LP, Mulder AA, Van Den Wollenberg DJ, Kottke TJ, Thompson J, et al. Antibody-neutralized reovirus is effective in oncolytic virotherapy. Cancer immunology research. 2018;6(10):1161-73. doi: 10/1161.abstract

Garofalo M, Villa A, Rizzi N, Kuryk L, Mazzaferro V, Ciana P. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies. Viruses. 2018;10(10):558. doi: 10.3390/v10100558

Fountzilas C, Patel S, Mahalingam D. Oncolytic virotherapy, updates and future directions. Oncotarget. 2017;8(60):102617. doi: articles/PMC5731986/

Au GG, Lindberg AM, Barry RD, Shafren DR. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. International journal of oncology. 2005;26(6):1471-6. doi: 10.3892/ijo.26.6.1471

Ali A, Hadi Esmaeili Gouvarchin G, Ruhollah D, Mahdieh F, Masoumeh B. Oncolytic Coxsackievirus and the Mechanisms of its Effects on Cancer: A Narrative Review. Current Cancer Therapy Reviews. 2021;17:1-7. doi: 10/189566/article

Miyamoto S, Inoue H, Nakamura T, Yamada M, Sakamoto C, Urata Y, et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer research. 2012;72(10):2609-21. doi: 10/2609.short

Liu H, Xue YC, Deng H, Mohamud Y, Ng CS, Chu A, et al. MicroRNA modification of Coxsackievirus B3 decreases its toxicity, while retaining oncolytic potency against lung cancer. Molecular Therapy-Oncolytics. 2020;16:207-18. doi: 10.1016/j.omto.2020.01.002

Miyamoto S, Sagara M, Kohara H, Tani K. Oncolytic coxsackievirus therapy as an immunostimulator. [Rinsho ketsueki] The Japanese journal of clinical hematology. 2017;58(8):977-82. doi: 10/med/28883283

Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21 in oncology. Oncolytic virotherapy. 2014;3:47. doi: articles/PMC4918364/

Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, et al. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clinical Cancer Research. 2019;25(19):5818-31. doi: 10/19/5818fbclid

Wang B, Ogata H, Takishima Y, Miyamoto S, Inoue H, Kuroda M, et al. A novel combination therapy for human oxaliplatin-resistant colorectal cancer using oxaliplatin and coxsackievirus A11. Anticancer research. 2018;38(11):6121-6. doi: 10.21873/anticanres.12963

Thirukkumaran C, Shi Z-Q, Thirukkumaran P, Luider J, Kopciuk K, Spurrell J, et al. PUMA and NF-kB are cell signaling predictors of reovirus oncolysis of breast cancer. PloS one. 2017;12(1):e0168233. doa: 10.1371/journal.pone.0168233

Ding Y, Fan J, Deng L, Peng Y, Zhou B, Huang B. Evaluation of Tumor Specificity and Immunity of Thymidine Kinase-Deleted Vaccinia Virus Guang9 Strain. OncoTargets and therapy. 2020;13:7683. doi: articles/PMC7415446/

Gholami S, Chen C, Gao S, Lou E, Fujisawa S, Carson J, et al. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer gene therapy. 2014;21(7):283-9. doi: articles/cgt201428

Zhou Y-a, Zhang T, Zhao J-b, Wang X-p, Jiang T, Gu Z-p, et al. The adenovirus-mediated transfer of PTEN inhibits the growth of esophageal cancer cells in vitro and in vivo. Bioscience, biotechnology, and biochemistry. 2010;74(4):736-40. doi: 10.1271/bbb.90787

Benencia F, Courrèges MC, Fraser NW, Coukos G. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation. Cancer biology & therapy. 2008;7(8):1194-205. doa: 10.4161/cbt.7.8.6216

Hassan F, Lossie SL, Kasik EP, Channon AM, Ni S, Kennedy MA. A mouse model study of toxicity and biodistribution of a replication defective adenovirus serotype 5 virus with its genome engineered to contain a decoy hyper binding site to sequester and suppress oncogenic HMGA1 as a new cancer treatment therapy. Plos one. 2018;13(2):e0192882. doa: 10.1371/journal.pone.0192882

Müller LM, Holmes M, Michael JL, Scott GB, West EJ, Scott KJ, et al. Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. Journal for immunotherapy of cancer. 2019;7(1):1-16. doi: 10.1186/s40425-019-0632-y

Parakrama R, Fogel E, Chandy C, Augustine T, Coffey M, Tesfa L, et al. Immune characterization of metastatic colorectal cancer patients post reovirus administration. BMC cancer. 2020;20(1):1-11. doi: 10.1186/s12885-020-07038-2

Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, et al. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Molecular Therapy. 2015;23(9):1532-40. doi: 10.1038/mt.2015.109

Streby KA, Geller JI, Currier MA, Warren PS, Racadio JM, Towbin AJ, et al. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clinical Cancer Research. 2017;23(14):3566-74. doi: 10/14/3566.abstract

Gatti‐Mays ME, Redman JM, Donahue RN, Palena C, Madan RA, Karzai F, et al. A Phase I Trial Using a Multitargeted Recombinant Adenovirus 5 (CEA/MUC1/Brachyury)‐Based Immunotherapy Vaccine Regimen in Patients with Advanced Cancer. The oncologist. 2020;25(6):479. doi: articles/PMC7288633/

Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome research. 2012;22(2):299-306. doi: 10.1101/gr.126516.111.

Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. The lancet oncology. 2003;4(9):548-56. doi: 10.1016/S1470-2045(03)01194-X

Patyar S, Joshi R, Byrav DP, Prakash A, Medhi B, Das B. Bacteria in cancer therapy: a novel experimental strategy. Journal of biomedical science. 2010;17(1):1-9. doi: 10.1186/1423-0127-17-21

Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell host & microbe. 2013;14(2):207-15. doi: 10.1016/j.chom.2013.07.007

Wargo JA, Golub TR, Straussman R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. doi: 10.1126/science.aah5043

Roy DG, Bell JC. Cell carriers for oncolytic viruses: current challenges and future

directions. Oncolytic virotherapy. 2013;2:47. doi: 10.1016/j.ejpb.2015.03.018

Van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical interactions between immunogenic cancer cell death, oncolytic viruses, and the immune system define the rational design of combination immunotherapies. The Journal of Immunology. 2018;200(2):450-8. doi: 10.4049/jimmunol.1701021

Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3(9):e955691. doi: 10.4161/21624011.2014.955691

Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature medicine. 2014;20(11):1301-9. doi: 10.1038/nm.3708

Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Molecular Therapy. 2014;22(11):1949-59. doi: 10.1038/mt.2014.160

Kleinpeter P, Fend L, Thioudellet C, Geist M, Sfrontato N, Koerper V, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death-1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology. 2016;5(10):e1220467. doi: 10.1080/2162402X.2016.1220467

留言 (0)

沒有登入
gif