Serum protease-activated receptor (PAR-1) levels as a potential biomarker for diagnosis of inflammation in type 2 diabetic patients

Antoniak S, Cardenas JC, Buczek LJ et al (2017) Protease-activated receptor 1 contributes to angiotensin II-induced cardiovascular remodeling and inflammation. Cardiology 136(4):258–268. https://doi.org/10.1159/000452269

CAS  Article  PubMed  Google Scholar 

Asokananthan N, Graham PT, Fink J et al (2002) Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 168(7):3577–3585. https://doi.org/10.4049/jimmunol.168.7.3577

CAS  Article  PubMed  Google Scholar 

Austin KM, Covic L, Kuliopulos A (2013) Matrix metalloproteases and PAR1 activation. Blood, J Hematol Am Soc 121(3):431–439

CAS  Google Scholar 

Calle MC, Fernandez ML (2012) Inflammation and type 2 diabetes. Diabetes Metab 38(3):183–191. https://doi.org/10.1016/j.diabet.2011.11.006

CAS  Article  PubMed  Google Scholar 

Chen H, Smith M, Herz J et al (2021) The role of protease-activated receptor 1 signaling in CD8 T cell effector functions. Iscience 24(11):103387. https://doi.org/10.1016/j.isci.2021.103387

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cunningham MA, Rondeau E, Chen X et al (2000) Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J Exp Med 191(3):455–462. https://doi.org/10.1084/jem.191.3.455

CAS  Article  PubMed  PubMed Central  Google Scholar 

De Beer FC, Hind CR, Fox KM et al (1982) Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Heart 47(3):239–243. https://doi.org/10.1136/hrt.47.3.239

Article  Google Scholar 

de Jager J, Dekker JM, Kooy A et al (2006) Endothelial dysfunction and low-grade inflammation explain much of the excess cardiovascular mortality in individuals with type 2 diabetes: the Hoorn study. Arterioscler Thromb Vasc Biol 26(5):1086–1093. https://doi.org/10.1161/01.ATV.0000215951.36219.a4

CAS  Article  PubMed  Google Scholar 

DeFronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1(1):1–22. https://doi.org/10.1038/nrdp.2015.19

Article  Google Scholar 

Dobrica E, Gaman MA, Cozma MA, Gaman AM, Diaconu CC (2019) Macrovascular and microvascular complications in type 2 diabetes mellitus: did hypertension change the setting? J Hypertens 37:e140–e141. https://doi.org/10.1097/01.hjh.0000571816.00025.b3

Article  Google Scholar 

El Sheikh WM, Alahmar IE, Salem GM, El-Sheikh MA (2019) Tumor necrosis factor alpha in peripheral neuropathy in type 2 diabetes mellitus. Egypt J Neurol Psychiatry Neurosurg 55(1):1–7. https://doi.org/10.1186/s41983-019-0080-0

Article  Google Scholar 

El-Edel RH, Fathy WM, Abou-Elela DH, Emara MM, El-Khair NT (2020) Role of tumor necrosis factor alpha in type 2 diabetic nephropathy. Menoufia Med J 33(3):920. https://doi.org/10.4103/mmj.mmj_430_18

Article  Google Scholar 

Fan Y, Zhang W, Mulholland M (2005) Thrombin and PAR-1-AP increase proinflammatory cytokine expression in C6 cells1. J Surg Res 129(2):196–201. https://doi.org/10.1016/j.jss.2005.07.041

CAS  Article  PubMed  Google Scholar 

Fang X, Liao R, Yu Y, Li J, Guo Z, Zhu T (2019) Thrombin induces secretion of multiple cytokines and expression of protease-activated receptors in mouse mast cell line. Mediat Inflamm. https://doi.org/10.1155/2019/4952131

Article  Google Scholar 

Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77

Article  Google Scholar 

Galicia-Garcia U, Benito-Vicente A, Jebari S et al (2020) Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 21(17):6275. https://doi.org/10.3390/ijms21176275

CAS  Article  PubMed Central  Google Scholar 

Ganz ML, Wintfeld N, Li Q et al (2014) The association of body mass index with the risk of type 2 diabetes: a case–control study nested in an electronic health records system in the United States. Diabetol Metab Syndr 6(1):1–8. https://doi.org/10.1186/1758-5996-6-50

Article  Google Scholar 

Ghouse J, Isaksen JL, Skov MW et al (2020) Effect of diabetes duration on the relationship between glycaemic control and risk of death in older adults with type 2 diabetes. Diabetes Obes Metab 22(2):231–242. https://doi.org/10.1111/dom.13891

CAS  Article  PubMed  Google Scholar 

Gray N, Picone G, Sloan F, Yashkin A (2015) The relationship between BMI and onset of diabetes mellitus and its complications. South Med J 108(1):29. https://doi.org/10.14423/SMJ.0000000000000214

Article  PubMed  PubMed Central  Google Scholar 

Guh DP, Zhang W, Bansback N et al (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9(1):1–20. https://doi.org/10.1186/1471-2458-9-88

Article  Google Scholar 

Gupta R, Pamecha H (2020) To study relationship of serum hsCRP with type 2 diabetes mellitus, its vascular complications and non-diabetics-case control study. J Assoc Phys India 68(8):25–29

Google Scholar 

Heuberger DM, Schuepbach RA (2019) Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thrombosis J 17:4. https://doi.org/10.1186/s12959-019-0194-8

CAS  Article  Google Scholar 

Hurley A, Smith M, Karpova T et al (2013) Enhanced effector function of CD8+ T cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1. J Infect Dis 207(4):638–650. https://doi.org/10.1093/infdis/jis730

CAS  Article  PubMed  Google Scholar 

Junge CE, Sugawara T, Mannaioni G et al (2003) The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci 100(22):13019–13024. https://doi.org/10.1073/pnas.2235594100

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Investig 103(6):879–887. https://doi.org/10.1172/JCI6042

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kanmani S, Kwon M, Shin MK, Kim MK (2019) Association of C-reactive protein with risk of developing type 2 diabetes mellitus, and role of obesity and hypertension: a large population-based Korean cohort study. Sci Rep 9(1):1–8. https://doi.org/10.1038/s41598-019-40987-8

CAS  Article  Google Scholar 

Lee PR, Johnson TP, Gnanapavan S et al (2017) Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1β. J Neuroinflammation 14(1):1–8. https://doi.org/10.1186/s12974-017-0901-y

CAS  Article  Google Scholar 

Lintermans LL, Stegeman CA, Heeringa P, Abdulahad WH (2014) T cells in vascular inflammatory diseases. Front Immunol 5:504. https://doi.org/10.3389/fimmu.2014.00504

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu X, Yu J, Song S, Yue X, Li Q (2017) Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 8(63):107334

Article  Google Scholar 

Liu Y, Tang ZZ, Zhang YM et al (2020) Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes. Biochem Pharmacol 175:113849. https://doi.org/10.1016/j.bcp.2020.113849

CAS  Article  PubMed  Google Scholar 

Mari B, Imbert V, Belhacene N et al (1994) Thrombin and thrombin receptor agonist peptide induce early events of T cell activation and synergize with TCR cross-linking for CD69 expression and interleukin 2 production. J Biol Chem 269(11):8517–8523. https://doi.org/10.1016/S0021-9258(17)37225-3

CAS  Article  PubMed  Google Scholar 

Navale AM, Paranjape AN (2013) Role of inflammation in development of diabetic complications and commonly used inflammatory markers with respect to diabetic complications. Int J Pharm Pharm Sci 5(Suppl 2):1–5

Google Scholar 

Nazari A, Sardoo AM, Fard ET et al (2017) Is IL-6 increased in type 2 diabetes mellitus patients independent of nephropathic complication. Endocrinol Diabetes Obes 5(2):1102

Google Scholar 

Pan A, Wang Y, Yuan JM, Koh WP (2017) High-sensitive C-reactive protein and risk of incident type 2 diabetes: a case–control study nested within the Singapore Chinese Health Study. BMC Endocr Disord 17(1):1–8. https://doi.org/10.1186/s12902-017-0159-5

CAS  Article  Google Scholar 

Pawlinski R, Tencati M, Hampton CR et al (2007) Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 116(20):2298–2306. https://doi.org/10.1161/CIRCULATIONAHA.107.692764

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pradeepa R, Mohan V (2021) Epidemiology of type 2 diabetes in India. Indian J Ophthalmol 69(11):2932. https://doi.org/10.4103/ijo.IJO_1627_21

Article  PubMed  PubMed Central  Google Scholar 

Randeria SN, Thomson GJ, Nell TA, Roberts T, Pretorius E (2019) Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol 18(1):1–5. https://doi.org/10.1186/s12933-019-0870-9

CAS  Article  Google Scholar 

Reddy S, Amutha A, Rajalakshmi R et al (2017) Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complicat 31(5):804–809. https://doi.org/10.1016/j.jdiacomp.2017.02.017

Article  Google Scholar 

Roudbary SA, Saadat F, Forghanparast K, Sohrabnejad R (2011) Serum C-reactive protein level as a biomarker for differentiation of ischemic from hemorrhagic stroke. Acta Med Iran 49:149–152

PubMed  Google Scholar 

Saeed MA, Ng GZ, Däbritz J et al (2017) Protease-activated receptor 1 plays a proinflammatory role in colitis by promoting Th17-related immunity. Inflamm Bowel Dis 23(4):593–602. https://doi.org/10.1097/MIB.0000000000001045

Article  PubMed  Google Scholar 

Sassy-Prigent C, Heudes D, Mandet C et al (2000) Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 49(3):466–475. https://doi.org/10.2337/diabetes.49.3.466

CAS  Article  PubMed  Google Scholar 

Satoh J, Yagihashi S, Toyota T (2003) The possible role of tumor necrosis factor-α in diabetic polyneuropathy. Exp Diabesity Res 4(2)

留言 (0)

沒有登入
gif