Tuning immunity through tissue mechanotransduction

Garoffolo, G. & Pesce, M. Mechanotransduction in the cardiovascular system: from developmental origins to homeostasis and pathology. Cells 8, 1607 (2019).

CAS  PubMed Central  Article  Google Scholar 

Hsieh, J. Y. et al. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 47, 14–24 (2017).

CAS  PubMed  Article  Google Scholar 

Meli, V. S. et al. Biophysical regulation of macrophages in health and disease. J. Leukoc. Biol. 106, 283–299 (2019).

CAS  PubMed  Article  Google Scholar 

Rowley, A. T., Nagalla, R. R., Wang, S.-W. & Liu, W. F. Extracellular matrix-based strategies for immunomodulatory biomaterials engineering. Adv. Healthc. Mater. 8, e1801578 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Smith, T. D., Nagalla, R. R., Chen, E. Y. & Liu, W. F. Harnessing macrophage plasticity for tissue regeneration. Adv. Drug Deliv. Rev. 114, 193–205 (2017).

CAS  PubMed  Article  Google Scholar 

Casal, J. I. & Bartolomé, R. A. RGD cadherins and α2β1 integrin in cancer metastasis: a dangerous liaison. Biochim. Biophys. Acta Rev. Cancer 1869, 321–332 (2018).

CAS  PubMed  Article  Google Scholar 

Feng, Y. et al. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J. Biol. Chem. 293, 19290–19302 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jansson, L. & Larsson, J. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PLoS ONE 7, e32013 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, L. et al. Integrin–YAP/TAZ–JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016). This report identifies that atheroprone-disturbed blood flow increases shear stress, thereby promoting endothelial YAP/TAZ activity; in addition, YAP/TAZ inhibition downregulates pro-inflammatory gene expression, which reduces monocyte attachment and infiltration.

CAS  PubMed  Article  Google Scholar 

Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

CAS  PubMed  Article  Google Scholar 

Gaspari, R. et al. Use of ultrasound elastography for skin and subcutaneous abscesses. J. Ultrasound Med. 28, 855–860 (2009).

PubMed  Article  Google Scholar 

Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pageon, S. V., Govendir, M. A., Kempe, D. & Biro, M. Mechanoimmunology: molecular-scale forces govern immune cell functions. Mol. Biol. Cell 29, 1919–1926 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).

CAS  PubMed  Article  Google Scholar 

Sugimura, K., Lenne, P.-F. & Graner, F. Measuring forces and stresses in situ in living tissues. Development 143, 186–196 (2016).

CAS  PubMed  Article  Google Scholar 

Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

CAS  PubMed  Article  Google Scholar 

Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. https://doi.org/10.1038/s41578-019-0169-1 (2020).

Article  Google Scholar 

Paul, C. D., Hung, W.-C., Wirtz, D. & Konstantopoulos, K. Engineered models of confined cell migration. Annu. Rev. Biomed. Eng. 18, 159–180 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Roy, N. H., MacKay, J. L., Robertson, T. F., Hammer, D. A. & Burkhardt, J. K. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci. Signal. 11, eaat3178 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Köhler, R. et al. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler. Thromb. Vasc. Biol. 26, 1495–1502 (2006).

PubMed  Article  CAS  Google Scholar 

Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Le, H. Q. et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18, 864–875 (2016).

CAS  PubMed  Article  Google Scholar 

Théry, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Even-Ram, S. et al. Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk. Nat. Cell Biol. 9, 299–309 (2007).

CAS  PubMed  Article  Google Scholar 

Uyeda, T. Q. P., Iwadate, Y., Umeki, N., Nagasaki, A. & Yumura, S. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS ONE 6, e26200 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Alam, S. G. et al. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Sci. Rep. 6, 38063 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Versaevel, M., Grevesse, T. & Gabriele, S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012).

PubMed  Article  CAS  Google Scholar 

Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126 (2001).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Oberoi, T. K. et al. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO J. 31, 14–28 (2012).

CAS  PubMed  Article  Google Scholar 

Lang, P. et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 15, 510–519 (1996).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Adamson, P., Marshall, C. J., Hall, A. & Tilbrook, P. A. Post-translational modifications of p21rho proteins. J. Biol. Chem. 267, 20033–20038 (1992).

CAS  PubMed  Article  Google Scholar 

Katayama, M. et al. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rhoA p21. J. Biol. Chem. 266, 12639–12645 (1991).

留言 (0)

沒有登入
gif