Macrophages as tools and targets in cancer therapy

Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

CAS  PubMed  Article  Google Scholar 

Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

CAS  PubMed  Article  Google Scholar 

Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

CAS  PubMed  Article  Google Scholar 

Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

CAS  PubMed  Article  Google Scholar 

DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Locati, M., Curtale, G. & Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 15, 123–147 (2020).

CAS  PubMed  Article  Google Scholar 

Jahchan, N. S. et al. Tuning the tumor myeloid microenvironment to fight cancer. Front. Immunol. 10, 1611 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Coussens, L. M., Zitvogel, L. & Palucka, A. K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim, I. S. et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21, 1113–1126 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020). This is the first study to use primary human macrophages transduced with a CAR recognizing the HER2 antigen; a phase I clinical trial using CAR-M is under way.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Advani, R. et al. CD47 Blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018). This is a phase Ib study in patients with non-Hodgkin lymphoma that showed promising activity of combining rituximab and CD47 blockade, pointing to CD47 as a novel myeloid checkpoint.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Siu, L. L. et al. First-in-class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin. Cancer Res. 28, 57–70 (2022). This paper presents promising preliminary results observed with the MK-4830 antibody, targeting the myeloid-specific ILT4 receptor in advanced solid tumours; the mechanism of action includes reprogramming of TAMs to enhance T cell activity.

CAS  PubMed  Article  Google Scholar 

Virtakoivu, R. et al. Systemic blockade of clever-1 elicits lymphocyte activation alongside checkpoint molecule downregulation in patients with solid tumors: results from a phase I/II clinical trial. Clin. Cancer Res. 27, 4205–4220 (2021).

CAS  PubMed  Article  Google Scholar 

Bottazzi, B. et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science 220, 210–212 (1983). This study is the first demonstration that macrophages are recruited in tumour tissues by tumour-derived chemotactic factors, later identified as CCL2.

CAS  PubMed  Article  Google Scholar 

Bain, C. C. et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat. Commun. 7, ncomms11852 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

CAS  PubMed  Article  Google Scholar 

Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Etzerodt, A. et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J. Exp. Med. 217, e20191869 (2020).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Blériot, C., Chakarov, S. & Ginhoux, F. Determinants of resident tissue macrophage identity and function. Immunity 52, 957–970 (2020).

PubMed  Article  CAS  Google Scholar 

Gutmann, D. H. & Kettenmann, H. Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron 104, 442–449 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Müller, A., Brandenburg, S., Turkowski, K., Müller, S. & Vajkoczy, P. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int. J. Cancer 137, 278–288 (2015).

PubMed  Article  CAS  Google Scholar 

Dumas, A. A. et al. Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment. EMBO J. 39, e103790 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gangoso, E. et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184, 2454–2470 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021). This study dissected the role of tissue-resident macrophages and monocyte-derived macrophages in lung cancer, showing that tissue-resident macrophages promote early epithelial–mesenchymal transition and tumour invasiveness, and a potent regulatory T cell response.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

CAS  PubMed  Article  Google Scholar 

Martinez-Usatorre, A. et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci. Transl Med. 13, eabd1616 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Singhal, S. et al. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci. Transl Med. 11, eaat1500 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

CAS  PubMed  Article  Google Scholar 

Martinez, F. O. et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121, e57–e69 (2013).

CAS  PubMed  Article  Google Scholar 

Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609 (2021).

CAS  PubMed  Article  Google Scholar 

Li, H. et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell 40, 36–52 (2022).

CAS  PubMed  Article  Google Scholar 

Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dzutsev, A. et al. Microbes and cancer. Annu. Rev. Immunol. 35, 199–228 (2017).

CAS

留言 (0)

沒有登入
gif