Modulating biomolecular condensates: a novel approach to drug discovery

Wilson, E. B. The structure of protoplasm. Science 10, 33–45 (1899).

CAS  PubMed  Article  Google Scholar 

Hopkins, F. G. The dynamic side of biochemistry. Br. Med. J. 2, 713–717 (1913).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heilbrunn, L. V. The colloid chemistry of protoplasm. Am. J. Physiol. 63, 481–498 (1923).

Article  Google Scholar 

Oparin, A. I. The Origin of Life (Foreign Language Publishing House, 1936).

Pederson, T. The nucleolus. Cold Spring Harb. Perspect. Biol. 3, a000638 (2011).

PubMed  PubMed Central  Google Scholar 

Cajal, S. R. Un sencillo metodo de coloracion selectiva del reticulo protoplasmico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados [Spanish]. Trab. Lab. Investig. Biol. Univ. Madr. 2, 129–221 (1903).

Google Scholar 

Negri, A. Contributo allo studio dell’eziologia della rabbia [Italian]. Boll. Della Soc. Med. chirurgica di Pavia 2, 88–115 (1904).

Google Scholar 

Hegner, R. W. Effects of removing the germ-cell determinants from the eggs of some chrysomelid beetles. Biol. Bull. 16, 19–26 (1908).

Article  Google Scholar 

Gall, J. G. The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 4, 975–980 (2003).

CAS  PubMed  Article  Google Scholar 

Nevers, Q., Albertini, A. A., Lagaudrière-Gesbert, C. & Gaudin, Y. Negri bodies and other virus membrane-less replication compartments. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118831 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

CAS  PubMed  Article  Google Scholar 

Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, P. et al. Phase transitions in the assembly of multi-valent signaling proteins. Nature 483, 336–340 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

CAS  PubMed  Article  Google Scholar 

Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hanazawa, M., Yonetani, M. & Sugimoto, A. PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J. Cell Biol. 192, 929–937 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hyman, A. A. & Brangwynne, C. P. Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev. Cell 21, 14–16 (2011).

CAS  PubMed  Article  Google Scholar 

Hyman, A. A. & Simons, K. Beyond oil and water — phase transitions in cells. Science 337, 1047–1049 (2012).

CAS  PubMed  Article  Google Scholar 

Keating, C. D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. 45, 2114–2124 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brangwynne, C. P. Phase transitions and size scaling of membrane-less organelles. J. Cell Biol. 203, 875–881 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

CAS  PubMed  Article  Google Scholar 

Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order short linear motifs — the unexplored frontier of the eukaryotic proteome. Cell Commun. Signal. 14, 1–20 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Portz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46, 550–563 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, F. et al. Dynamic phase separation of the androgen receptor and its coactivators to regulate gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.03.27.437301 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).

CAS  PubMed  Article  Google Scholar 

Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

CAS  PubMed  Article  Google Scholar 

Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819.e11 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wheeler, R. J. et al. Small molecules for modulating protein driven liquid–liquid phase separation in treating neurodegenerative disease. Preprint at bioRxiv https://doi.org/10.1101/721001 (2019).

Article  Google Scholar 

McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes. Dev. 33, 1619–1634 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mitrea, D. M. et al. Methods for physical characterization of phase-separated bodies and membrane-less organelles. J. Mol. Biol. 430, 4773–4805 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry 57, 2415–2423 (2018).

CAS  PubMed  Article  Google Scholar 

Fare, C. M., Villani, A., Drake, L. E. & Shorter, J. Higher-order organization of biomolecular condensates. Open. Biol. 11, 210137 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

CAS  PubMed  Article  Google Scholar 

Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

CAS  PubMed  Article  Google Scholar 

Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Weber, S. C. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Curr. Opin. Cell Biol. 46, 62–71 (2017).

留言 (0)

沒有登入
gif