Chk1/2 inhibitor AZD7762 enhances the susceptibility of IDH-mutant brain cancer cells to temozolomide

Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13:345.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122:1580–9.

PubMed  PubMed Central  Article  Google Scholar 

Kayabolen A, Yilmaz E, Bagci-Onder T. IDH mutations in glioma: double-edged sword in clinical applications? Biomedicines. 2021;9(7):799.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang J, Stevens M, Bradshaw T. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012;5:102–14.

CAS  PubMed  Article  Google Scholar 

Yoshimoto K, Mizoguchi M, Hata N, Murata H, Hatae R, Amano T, et al. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol. 2012;2:186.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Roos WP, Batista LFZ, Naumann SC, Wick W, Weller M, Menck CFM, et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene. 2006;26:186–97.

PubMed  Article  CAS  Google Scholar 

Fuchs RP, Isogawa A, Paulo JA, Onizuka K, Takahashi T, Amunugama R, et al. Crosstalk between repair pathways elicits double-strand breaks in alkylated dna and implications for the action of temozolomide. Elife. 2021;10: e69544.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Annovazzi L, Mellai M, Schiffer D. Chemotherapeutic drugs: DNA damage and repair in glioblastoma. Cancers. 2017;9(6):57.

PubMed Central  Article  CAS  Google Scholar 

Eich M, Roos P, Nikolova T, Kaina B. Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide. Mol Cancer Ther. 2013;12(11):2529–40.

CAS  PubMed  Article  Google Scholar 

Annovazzi L, Caldera V, Mellai M, Riganti C, Battaglia L, Chirio D, et al. The DNA damage/repair cascade in glioblastoma cell lines after chemotherapeutic agent treatment. Int J Oncol. 2015;46:2299–308.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Leonardi R, Subramanian C, Jackowski S, Rock CO. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem. 2012;287:14615.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Del Alcazar CRG, Todorova PK, Habib AA, Mukherjee B, Burma S. Augmented HR repair mediates acquired-temozolomide resistance in glioblastoma. Mol Cancer Res. 2016;14:928.

Article  CAS  Google Scholar 

Itamochi H, Nishimura M, Oumi N, Kato M, Oishi T, Shimada M, et al. Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014;24:61–9.

PubMed  Article  Google Scholar 

Wang L, Wang Y, Chen A, Jalali A, Liu S, Guo Y, et al. Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling. Int J Oncol. 2018;53:1001–12.

CAS  PubMed  PubMed Central  Google Scholar 

Zhu J, Zou H, Yu W, Huang Y, Liu B, Li T, et al. Checkpoint kinase inhibitor AZD7762 enhance cisplatin-induced apoptosis in osteosarcoma cells. Cancer Cell Int. 2019;19:1–11.

Article  CAS  Google Scholar 

Isono M, Hoffmann MJ, Pinkerneil M, Sato A, Michaelis M, Cinatl J, et al. Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine. J Exp Clin Cancer Res. 2017;36:1–12.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Abe H, Natsumeda M, Kanemaru Y, Watanabe J, Tsukamoto Y, Okada M, et al. MGMT expression contributes to temozolomide resistance in H3K27M-mutant diffuse midline gliomas and MGMT silencing to temozolomide sensitivity in IDH-mutant gliomas. Neurol Med Chir (Tokyo). 2018;58:290.

Article  Google Scholar 

Yu Y, Villanueva-Meyer J, Grimmer MR, Hilz S, Solomon DA, Choi S, et al. Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade IDH-mutant gliomas. Neuro Oncol. 2021;23(11):1872–84.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aasland D, Götzinger L, Hauck L, Berte N, Meyer J, Effenberger M, et al. Temozolomide induces senescence and repression of DNA repair pathways in glioblastoma cells via activation of ATR–CHK1, p21, and NF-κB. Cancer Res. 2019;79:99–113.

CAS  PubMed  Article  Google Scholar 

Langerak P, Russell P. Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc B. 2011;366:3562–71.

CAS  Article  Google Scholar 

Filippi-Chiela EC, Thomé MP, Bueno e Silva MM, Pelegrini AL, Ledur PF, Garicochea B, et al. Resveratrol abrogates the Temozolomide-induced G2 arrest leading to mitotic catastrophe and reinforces the Temozolomide-induced senescence in glioma cells. BMC Cancer 2013;13:1–13.

Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2007;18:85–98.

Article  CAS  Google Scholar 

Sun X, Turcan S. From laboratory studies to clinical trials: temozolomide use in IDH-mutant gliomas. Cells. 2021;10:1225.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hirose Y, Berger MS, Pieper RO. Abrogation of the Chk1-mediated G2 checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. 2001;61:5843–9.

CAS  PubMed  Google Scholar 

Stepanenko AA, Andreieva SV, Korets KV, Mykytenko DO, Baklaushev VP, Huleyuk NL, et al. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. 2016;16:1–16.

Article  CAS  Google Scholar 

Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18:1–14.

Google Scholar 

Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, et al. Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst). 2009;8:72–86.

CAS  Article  Google Scholar 

Wang H-H, Chang T-Y, Lin W-C, Wei K-C, Shin J-W. GADD45A plays a protective role against temozolomide treatment in glioblastoma cells. Sci Rep. 2017;7:1–15.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Jin S, Mazzacurati L, Zhu X, Tong T, Song Y, Shujuan S, et al. Gadd45a contributes to p53 stabilization in response to DNA damage. Oncogene. 2003;22:8536–40.

CAS  PubMed  Article  Google Scholar 

Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, Tron VA. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol. 2002;119:22–6.

CAS  PubMed  Article  Google Scholar 

Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z, et al. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int. 2020;20:1–16.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tsai SF, Tao M, Ho LI, Chiou TW, Lin SZ, Su HL, et al. Isochaihulactone-induced DDIT3 causes ER stress-PERK independent apoptosis in glioblastoma multiforme cells. Oncotarget. 2017;8:4051.

PubMed  Article  Google Scholar 

Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 2004;18:3041.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 2008;7:1765.

CAS  Article  Google Scholar 

Lin L, Cai J, Tan Z, Meng X, Li R, Li Y, et al. Mutant IDH1 enhances temozolomide sensitivity via regulation of the ATM/CHK2 pathway in glioma. Cancer Res Treat. 2021;53:367.

CAS  PubMed  Article  Google Scholar 

Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003;22:5834–47.

CAS  PubMed  Article  Google Scholar 

Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, et al. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene. 2004;23:4353–61.

CAS  PubMed  Article  Google Scholar 

Liao H, Ji F, Helleday T, Ying S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep. 2018;19: e46263.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Krishnan V, Tay LS, Ito Y. The fanconi anemia pathway of DNA repair and human cancer. Adv DNA Repair 2015

Syljuåsen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol. 2005;25:3553.

PubMed  PubMed Central  Article  CAS 

留言 (0)

沒有登入
gif