Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells

Lepper C, Partridge TA, Fan C-M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138:3639–46.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 2011;138:3647–56.

CAS  PubMed  Article  Google Scholar 

Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med. 2009;266:372–89.

CAS  PubMed  Article  Google Scholar 

Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche [internet]. Physiol Rev. 2013:23–67. https://doi.org/10.1152/physrev.00043.2011.

Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol. 2016;17:267–79.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Machado L, Esteves de Lima J, Fabre O, Proux C, Legendre R, Szegedi A, et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep. 2017;21:1982–93.

CAS  PubMed  Article  Google Scholar 

van Velthoven CTJ, de Morree A, Egner IM, Brett JO, Rando TA. Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep. 2017;21:1994–2004.

PubMed  PubMed Central  Article  CAS  Google Scholar 

van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J, Baron CS, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods. 2017;14:935–6.

PubMed  Article  CAS  Google Scholar 

Almada AE, Horwitz N, Price FD, Gonzalez AE, Ko M, Bolukbasi OV, et al. FOS licenses early events in stem cell activation driving skeletal muscle regeneration. Cell Rep. 2021;34:108656.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DDW, Fedorov YV, et al. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol. 2005;169:105–16.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li L, Chambard JC, Karin M, Olson EN. Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression. Genes Dev. 1992;6:676–89.

CAS  PubMed  Article  Google Scholar 

Lassar AB, Thayer MJ, Overell RW, Weintraub H. Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1 [internet]. Cell. 1989:659–67. https://doi.org/10.1016/0092-8674(89)90101-3.

Rahm M, Jin P, Sümegi J, Sejersen T. Elevated c-fos expression inhibits differentiation of L6 rat myoblasts. J Cell Physiol. 1989;139:237–44.

CAS  PubMed  Article  Google Scholar 

Karin M, Liu Z-G, Zandi E. AP-1 function and regulation [internet]. Curr Opin Cell Biol. 1997:240–6. https://doi.org/10.1016/s0955-0674(97)80068-3.

Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA, et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol Cell. 2017;68:1067–82.e12.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol. 2019;20:535–50.

CAS  PubMed  Article  Google Scholar 

Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell. 2016;164:1110–21.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dall’Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, et al. Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation [internet]. Mol Cell. 2019:453–72.e8. https://doi.org/10.1016/j.molcel.2019.07.036.

Barutcu AR, Lajoie BR, McCord RP, Tye CE, Hong D, Messier TL, et al. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 2015;16:214.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Sivakumar A, de Las Heras JI, Schirmer EC. Spatial genome organization: from development to disease. Front Cell Dev Biol. 2019;7:18.

PubMed  PubMed Central  Article  Google Scholar 

Norton HK, Phillips-Cremins JE. Crossed wires: 3D genome misfolding in human disease. J Cell Biol. 2017;216:3441–52.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kaiser VB, Semple CA. When TADs go bad: chromatin structure and nuclear organisation in human disease. F1000Res. 2017;6. https://doi.org/10.12688/f1000research.10792.1.

Anania C, Lupiáñez DG. Order and disorder: abnormal 3D chromatin organization in human disease. Brief Funct Genomics. 2020;19:128–38.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Fritz AJ, Ghule PN, Boyd JR, Tye CE, Page NA, Hong D, et al. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer. J Cell Physiol. 2018;233:1278–90.

CAS  PubMed  Article  Google Scholar 

Shin K-J, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang J-I, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci U S A. 2006;103:13759–64.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hou L, Zhu L, Li H, Jiang F, Cao L, Hu CY, et al. MiR-501-3p forms a feedback loop with FOS, MDFI, and MyoD to regulate C2C12 myogenesis. Cells. 2019;8. https://doi.org/10.3390/cells8060573.

Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol. 2013;201:499–510.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, et al. C-ing the genome: a compendium of chromosome conformation capture methods to study higher-order chromatin organization. J Cell Physiol. 2016;231:31–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551:51–6.

PubMed  PubMed Central  Article  Google Scholar 

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Le Dily F, Baù D, Pohl A, Vicent GP, Serra F, Soronellas D, et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 2014;28:2151–62.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically associating domains. Sci Adv. 2019;5:eaaw1668.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zufferey M, Tavernari D, Oricchio E, Ciriello G. Comparison of computational methods for the identification of topologically associating domains. Genome Biol. 2018;19:217.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hansen AS, Cattoglio C, Darzacq X, Tjian R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus. 2018;9:20–32.

CAS  PubMed  Article  Google Scholar 

Espinola SM, Götz M, Fiche J-B, Bellec M, Houbron C, Cardozo Gizzi AM, et al. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during development [internet]. https://doi.org/10.1101/2020.07.07.191015.

Greenwald WW, Li H, Benaglio P, Jakubosky D, Matsui H, Schmitt A, et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat Commun. 2019;10:1054.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, et al. MyoD is a 3D genome structure organizer for muscle cell identity. Nat Commun. 2022;13:205.

CAS  PubMed  PubMed Central  Article  Google Scholar 

van Dam H, Castellazzi M. Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis. Oncogene. 2001;20:2453–64.

PubMed  Article  CAS  Google Scholar 

Trouche D, Grigoriev M, Lenormand JL, Robin P, Leibovitch SA, Sassone-Corsi P, et al. Repression of c-fos promoter by MyoD on muscle cell differentiation. Nature. 1993;363:79–82.

CAS  PubMed  Article  Google Scholar 

Curran T, Morgan JI. Fos: an immediate-early transcription factor in neurons [internet]. J Neurobiol. 1995:403–12. https://doi.org/10.1002/neu.480260312.

Kami K, Noguchi K, Senba E. Localization of myogenin, c-fos, c-Jun, and muscle-specific gene mRNAs in regenerating rat skeletal muscle. Cell Tissue Res. 1995;280:11–9.

留言 (0)

沒有登入
gif