Upregulating carnitine palmitoyltransferase 1 attenuates hyperoxia-induced endothelial cell dysfunction and persistent lung injury

Bancalari E, Jain D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology. 2019;115:384–91.

PubMed  Article  Google Scholar 

Mowitz ME, Ayyagari R, Gao W, Zhao J, Mangili A, Sarda SP. Health care burden of bronchopulmonary dysplasia among extremely preterm infants. Front Pediatr. 2019;7:510.

PubMed  PubMed Central  Article  Google Scholar 

Alvarez-Fuente M, Arruza L, Muro M, Zozaya C, Avila A, Lopez-Ortego P, Gonzalez-Armengod C, Torrent A, Gavilan JL, Del Cerro MJ. The economic impact of prematurity and bronchopulmonary dysplasia. Eur J Pediatr. 2017;176:1587–93.

PubMed  Article  Google Scholar 

Moschino L, Stocchero M, Filippone M, Carraro S, Baraldi E. Longitudinal assessment of lung function in survivors of bronchopulmonary dysplasia from birth to adulthood. The Padova BPD study. Am J Respir Crit Care Med. 2018;198:134–7.

PubMed  Article  Google Scholar 

Katz SL, Luu TM, Nuyt AM, Lacaze T, Adamo KB, Adatia I, Humpl T, Jankov RP, Moraes TJ, Staub K, et al. Long-term follow-up of cardiorespiratory outcomes in children born extremely preterm: recommendations from a Canadian consensus workshop. Paediatr Child Health. 2017;22:75–9.

PubMed  PubMed Central  Article  Google Scholar 

Caskey S, Gough A, Rowan S, Gillespie S, Clarke J, Riley M, Megarry J, Nicholls P, Patterson C, Halliday HL, et al. Structural and functional lung impairment in adult survivors of bronchopulmonary dysplasia. Ann Am Thorac Soc. 2016;13:1262–70.

PubMed  Article  Google Scholar 

Hurst JR, Beckmann J, Ni Y, Bolton CE, McEniery CM, Cockcroft JR, Marlow N. Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years. Am J Respir Crit Care Med. 2020;202:422–32.

PubMed  PubMed Central  Article  Google Scholar 

Gong J, Feng Z, Peterson AL, Carr JF, Lu X, Zhao H, Ji X, Zhao YY, De Paepe ME, Dennery PA, Yao H. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight. 2021;6: e140785.

Article  Google Scholar 

Warner BB, Stuart LA, Papes RA, Wispe JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998;275:L110-117.

CAS  PubMed  Google Scholar 

Yao H, Gong J, Peterson AL, Lu X, Zhang P, Dennery PA. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice. Am J Respir Cell Mol Biol. 2019;60:667–77.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Michael Z, Spyropoulos F, Ghanta S, Christou H. Bronchopulmonary dysplasia: an update of current pharmacologic therapies and new approaches. Clin Med Insights Pediatr. 2018;12:1179556518817322.

PubMed  PubMed Central  Article  Google Scholar 

Mandell EW, Kratimenos P, Abman SH, Steinhorn RH. Drugs for the prevention and treatment of bronchopulmonary dysplasia. Clin Perinatol. 2019;46:291–310.

PubMed  Article  Google Scholar 

Appuhn SV, Siebert S, Myti D, Wrede C, Surate Solaligue DE, Perez-Bravo D, Brandenberger C, Schipke J, Morty RE, Grothausmann R, Muhlfeld C. Capillary changes precede disordered alveolarization in a mouse model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2021;65:81–91.

CAS  PubMed  Article  Google Scholar 

McGrath-Morrow SA, Cho C, Cho C, Zhen L, Hicklin DJ, Tuder RM. Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am J Respir Cell Mol Biol. 2005;32:420–7.

CAS  PubMed  Article  Google Scholar 

Abman SH. Bronchopulmonary dysplasia: “a vascular hypothesis.” Am J Respir Crit Care Med. 2001;164:1755–6.

CAS  PubMed  Article  Google Scholar 

Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520:192–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.

PubMed  Article  CAS  Google Scholar 

Ceccarelli SM, Chomienne O, Gubler M, Arduini A. Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research. J Med Chem. 2011;54:3109–52.

CAS  PubMed  Article  Google Scholar 

Zhao H, Dennery PA, Yao H. Metabolic reprogramming in the pathogenesis of chronic lung diseases including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2018;314:L544–54.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Karlic H, Lohninger S, Koeck T, Lohninger A. Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J Histochem Cytochem. 2002;50:205–12.

CAS  PubMed  Article  Google Scholar 

Xi L, Brown K, Woodworth J, Shim K, Johnson B, Odle J. Maternal dietary l-carnitine supplementation influences fetal carnitine status and stimulates carnitine palmitoyltransferase and pyruvate dehydrogenase complex activities in swine. J Nutr. 2008;138:2356–62.

CAS  PubMed  Article  Google Scholar 

Wutzke KD, Lorenz H. The effect of l-carnitine on fat oxidation, protein turnover, and body composition in slightly overweight subjects. Metabolism. 2004;53:1002–6.

CAS  PubMed  Article  Google Scholar 

Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, Lv J, Cao C, Chen T, Zhuang S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A. 2018;115:E5896–905.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Mund SI, Stampanoni M, Schittny JC. Developmental alveolarization of the mouse lung. Dev Dyn. 2008;237:2108–16.

PubMed  Article  Google Scholar 

Zana-Taieb E, Pham H, Franco-Montoya ML, Jacques S, Letourneur F, Baud O, Jarreau PH, Vaiman D. Impaired alveolarization and intra-uterine growth restriction in rats: a postnatal genome-wide analysis. J Pathol. 2015;235:420–30.

CAS  PubMed  Article  Google Scholar 

Yee M, Chess PR, McGrath-Morrow SA, Wang Z, Gelein R, Zhou R, Dean DA, Notter RH, O’Reilly MA. Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity. Am J Physiol Lung Cell Mol Physiol. 2009;297:L641-649.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Audi SH, Jacobs ER, Zhao M, Roerig DL, Haworth ST, Clough AV. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin. Nucl Med Biol. 2015;42:46–52.

CAS  PubMed  Article  Google Scholar 

Zhang Y, Jiang G, Sauler M, Lee PJ. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. FASEB J. 2013;27:4041–58.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Uno K, Merges CA, Grebe R, Lutty GA, Prow TW. Hyperoxia inhibits several critical aspects of vascular development. Dev Dyn. 2007;236:981–90.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Peterson AL, Carr JF, Ji X, Dennery PA, Yao H. Hyperoxic exposure caused lung lipid compositional changes in neonatal mice. Metabolites. 2020; 10.

Van Aerde JE. In preterm infants, does the supplementation of carnitine to parenteral nutrition improve the following clinical outcomes: Growth, lipid metabolism and apneic spells? Part B: clinical commentary. Paediatr Child Health. 2004;9:573.

PubMed  PubMed Central  Article  Google Scholar 

Van Aerde T. In preterm infants, does the supplementation of carnitine to parenteral nutrition improve the following clinical outcomes: Growth, lipid metabolism and apneic spells? Part A: evidence-based answer and summary. Paediatr Child Health. 2004;9:571–2.

PubMed  PubMed Central  Article  Google Scholar 

Clark RH, Chace DH, Spitzer AR. Impact of l-carnitine supplementation on metabolic profiles in premature infants. J Perinatol. 2017;37:566–71.

CAS  PubMed  Article  Google Scholar 

Gucciardi A, Zaramella P, Costa I, Pirillo P, Nardo D, Naturale M, Chiandetti L, Giordano G. Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns. Pediatr Res. 2015;77:36–47.

PubMed  Article  Google Scholar 

Ozturk MA, Kardas Z, Kardas F, Gunes T, Kurtoglu S. Effects of l-carnitine supplementation on respiratory distress syndrome development and prognosis in premature infants: a single blind randomized controlled trial. Exp Ther Med. 2016;11:1123–7.

CAS  PubMed  Article  Google Scholar 

De Paepe ME, Mao Q, Powell J, Rubin SE, DeKoninck P, Appel N, Dixon M, Gundogan F. Growth of pulmonary microvasculature in ventilated preterm infants. Am J Respir Crit Care Med. 2006;173:204–11.

PubMed  Article  Google Scholar 

Gong J, Feng Z, Peterson AL, Carr JF, Vang A, Braza J, Choudhary G, Dennery PA, Yao H. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. J Pathol. 2020;252:411–22.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wolfgang MJ, Kurama T, Dai Y, Suwa A, Asaumi M, Matsumoto S, Cha SH, Shimokawa T, Lane MD. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci U S A. 2006;103:7282–7.

留言 (0)

沒有登入
gif