Review: the role of GSDMD in sepsis

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):775–87. https://doi.org/10.1001/jama.2016.0287.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Maloney PJ. Sepsis and septic shock. Emergency medicine clinics of North America. Lancet. 2018;392(10141):75–87. https://doi.org/10.1016/S0140-6736(18)30696-2.

Article  Google Scholar 

Munoz AC, Nawaratne U, Mcmann D, Ellsworth M, Boukas K. Late-onset neonatal sepsis in a patient with covid-19. N Engl J Med. 2020;382(19): e49. https://doi.org/10.1056/NEJMc2010614.

Article  Google Scholar 

Karlsson S, Varpula M, Ruokonen E, Pettil V, Parviainen I, Ala-Kokko TI, Kolho E, Rintala EM. Incidence, treatment, and outcome of severe sepsis in ICU-treated adults in Finland: the Finnsepsis study. Intensive Care Med. 2007;33(3):435–43. https://doi.org/10.1007/s00134-006-0504-z.

Article  PubMed  Google Scholar 

Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Reinhart K. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–72. https://doi.org/10.1164/rccm.201504-0781OC.

CAS  Article  PubMed  Google Scholar 

Walkey AJ, Kirkpatrick AR, Summer RS. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;373(9):1629–38. https://doi.org/10.1056/NEJMoa1415236.

CAS  Article  Google Scholar 

Jacob JA. New sepsis diagnostic guidelines shift focus to organ dysfunction. JAMA. 2016;315(8):739. https://doi.org/10.1001/jama.2016.0736.

CAS  Article  PubMed  Google Scholar 

Chen Y, Luo R, Li J, Wang S, Ding J, Zhao K, Lu B, Zhou W. Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis. ACS Nano. 2022;16(2):2429–41. https://doi.org/10.1021/acsnano.1c08913.

CAS  Article  PubMed  Google Scholar 

Miao E, Leaf I, Treuting P, Mao D, Sarkar A, Wewers M, Aderem A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42. https://doi.org/10.1038/ni.1960.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zheng X, Chen W, Gong F, Chen Y, Chen E. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review. Front Immunol. 2021;12: 711939. https://doi.org/10.3389/fimmu.2021.711939.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71. https://doi.org/10.1038/nature15541.

CAS  Article  PubMed  Google Scholar 

He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–98. https://doi.org/10.1038/cr.2015.139.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jianjin S, Yue Z, Kun W, Xuyan S, Yue W, Huanwei H, Yinghua Z, Tao C, Fengchao W, Feng S. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5. https://doi.org/10.1038/nature15514.

CAS  Article  Google Scholar 

Cierra N, Casson J, Yu V, Reyes M, Frances O. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci USA. 2015;112(21):6688–93. https://doi.org/10.1073/pnas.1421699112.

CAS  Article  Google Scholar 

Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–3. https://doi.org/10.1126/science.1240988.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–9. https://doi.org/10.1038/358167a0.

CAS  Article  PubMed  Google Scholar 

Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Molecular Microbiology Mol Microbiol. 2000;38(1):31–40. https://doi.org/10.1046/j.1365-2958.2000.02103.x.

CAS  Article  PubMed  Google Scholar 

Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4. https://doi.org/10.1016/s0966-842x(00)01936-3.

CAS  Article  PubMed  Google Scholar 

Muendlein HI, David J, Connolly WM, Eidell KP, Zoie M, Irina S, Alexander P. cFLIPL protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science. 2020;367(6484):1379–84. https://doi.org/10.1126/science.aay3878.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen R, Zeng L, Zhu S, Liu J, Kang R. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aav5562.

Article  PubMed  PubMed Central  Google Scholar 

Hattori Y, Takano KI, Teramae H, Yamamoto S, Yokoo H, Matsuda N. Insights into sepsis therapeutic design based on the apoptotic death pathway. J Pharmacol Sci. 2010;114(4):354–65. https://doi.org/10.1254/jphs.10r04cr.

CAS  Article  PubMed  Google Scholar 

Kang R, Ling Z, Shan Z, Xie Y, Liu J, Wen Q, Cao L, Min X, Ran Q, Guido K. Lipid peroxidation drives gasdermin d-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24(1):97-108.e4. https://doi.org/10.1016/j.chom.2018.05.009.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang Q, Wang Y, Ding J, Wang C, Liu Z. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421–6. https://doi.org/10.1038/s41586-020-2079-1.

CAS  Article  PubMed  Google Scholar 

Melanie F, Günther S, Robin S, Marie-Christine A, Fabian S, Paul WJ, Schiffmann LM, Neil S, Hannah S, Seeger JM. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575(7784):683–7. https://doi.org/10.1038/s41586-019-1770-6.

CAS  Article  Google Scholar 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Kroemer G. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.

Article  PubMed  PubMed Central  Google Scholar 

Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, Kanneganti T, Monahan J, Abu-Amer Y, Lieberman J, Mbalaviele G. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci Immunol. 2021. https://doi.org/10.1126/sciimmunol.abj3859.

Article  PubMed  PubMed Central  Google Scholar 

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Peng L, Hu L, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514(7521):187–92. https://doi.org/10.1038/nature13683.

CAS  Article  PubMed  Google Scholar 

Feng S. Gasdermins: making pores for pyroptosis. Nat Rev Immunol. 2021;21(10):620–1. https://doi.org/10.1038/s41577-021-00602-2.

CAS  Article  Google Scholar 

Xia S, Zhang Z, Magupalli VG, Pablo JL, Wu H. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 2021;593(7860):607–11. https://doi.org/10.1038/s41586-021-03478-3.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gao YL, Zhai JH, Chai YF. Recent advances in the molecular mechanisms underlying pyroptosis in sepsis. Mediators Inflamm. 2018;2018:5823823. https://doi.org/10.1155/2018/5823823.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Karki R, Kanneganti T. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19(4):197–214. https://doi.org/10.1038/s41568-019-0123-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26. https://doi.org/10.1016/s1097-2765(02)00599-3.

CAS  Article  PubMed  Google Scholar 

Fernandes-Alnemri T, Yu J, Datta P, Wu J, Alnemri E. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509–13. https://doi.org/10.1038/nature07710.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey D, Latz E, Fitzgerald K. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–8. https://doi.org/10.1038/nature07725.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ding J, Shao F. SnapShot: The noncanonical inflammasome. Cell. 2017;168(3):544–544. https://doi.org/10.1016/j.cell.2017.01.008.

CAS  Article  PubMed  Google Scholar 

Katoh M, Katoh M. Identification and characterization of human DFNA5L, mouse Dfna5l, and rat Dfna5l genes in silico. Int J Oncol. 2004;25(3):765–70.

CAS 

留言 (0)

沒有登入
gif