The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion

Akselrod M, Martuzzi R, Serino A, Van der Zwaag W, Gassert R, Blanke O (2017) Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. Neuroimage 159:473–487

PubMed  Article  Google Scholar 

Albright TD, Desimone R (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65(3):582–592

CAS  PubMed  Article  Google Scholar 

Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718

PubMed  PubMed Central  Article  Google Scholar 

Amemiya T, Beck B, Walsh V, Gomi H, Haggard P (2017) Visual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study. Sci Rep 7(1):1–7

Article  CAS  Google Scholar 

Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24(3):563–578

PubMed  Article  Google Scholar 

Arnoldussen DM, Goossens J, van den Berg AV (2011) Adjacent visual representations of self-motion in different reference frames. Proc Natl Acad Sci 108(28):11668–11673

CAS  PubMed  PubMed Central  Article  Google Scholar 

Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, Orban GA (2016) Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci 113(13):E1936–E1943

CAS  PubMed  PubMed Central  Article  Google Scholar 

Beer J, Blakemore C, Previc FH, Liotti M (2002) Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Exp Brain Res 143(1):78–88. https://doi.org/10.1007/s00221-001-0947-y

Article  PubMed  Google Scholar 

Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101

PubMed  Article  Google Scholar 

Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495

CAS  PubMed  Article  Google Scholar 

Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain: J Neurol 121(9):1749–1758

Article  Google Scholar 

Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig Germany (Reprinted 1925)

Google Scholar 

Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16(7):832–837

PubMed  Article  Google Scholar 

Burr DC, Morrone MC, Vaina LM (1998) Large receptive fields for optic flow detection in humans. Vision Res 38(12):1731–1743

CAS  PubMed  Article  Google Scholar 

Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973

PubMed  Article  Google Scholar 

Chen A, Gu Y, Takahashi K, Angelaki DE, DeAngelis GC (2008) Clustering of self-motion selectivity and visual response properties in Macaque area MSTd. J Neurophysiol 100:2669–2683

PubMed  PubMed Central  Article  Google Scholar 

Chen X, Deangelis GC, Angelaki DE (2013) Diverse spatial reference frames of vestibular signals in parietal cortex. Neuron 80:1310–1321. https://doi.org/10.1016/j.neuron.2013.09.006

CAS  Article  PubMed  Google Scholar 

Cottereau BR, Smith AT, Rima S, Fize D, Héjja-Brichard Y, Renaud L, Durand JB (2017) Processing of egomotion-consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27(1):330–343

PubMed  PubMed Central  Google Scholar 

Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I Segmentation and surface reconstruction. Neuroimage 9(2):179–194

CAS  PubMed  Article  Google Scholar 

Dalla Volta R, Fasano F, Cerasa A, Mangone G, Quattrone A, Buccino G (2015) Walking indoors, walking outdoors: an fMRI study. Front Psychol 6:1502

PubMed  PubMed Central  Article  Google Scholar 

De Castro V, Smith AT, Beer AL, Leguen C, Vayssière N, Héjja-Brichard Y, Audurier P, Cottereau BR, Durand JB (2021) Connectivity of the cingulate sulcus visual area (CSv) in macaque monkeys. Cereb Cortex 31(2):1347–1364. https://doi.org/10.1093/cercor/bhaa301

Article  PubMed  Google Scholar 

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

PubMed  Article  Google Scholar 

Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189

CAS  PubMed  Article  Google Scholar 

DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12(9):991–997

PubMed  Article  Google Scholar 

DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser JON, Cox R, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci 93(6):2382–2386

CAS  PubMed  PubMed Central  Article  Google Scholar 

Di Marco S, Tosoni A, Altomare EC, Ferretti G, Perrucci MG, Committeri G (2019) Walking-related locomotion is facilitated by the perception of distant targets in the extrapersonal space. Sci Rep 9:9884. https://doi.org/10.1038/s41598-019-46384-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S (2021a) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92

PubMed  Article  Google Scholar 

Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, Galletti C, Pitzalis S (2021b) Multisensory integration in cortical regions responding to locomotion-related visual and somatomotor signals. Neuroimage. https://doi.org/10.1016/j.neuroimage.2021.118581

Article  PubMed  Google Scholar 

Di Russo F, Committeri G, Pitzalis S, Spitoni G, Piccardi L, Galati G, Pizzamiglio L (2006) Cortical plasticity following surgical extension of lower limbs. Neuroimage 30(1):172–183

PubMed  Article  Google Scholar 

Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827

CAS  PubMed  Article  Google Scholar 

Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli I A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6):1329–1345. https://doi.org/10.1152/jn.1991.65.6.1329

CAS  Article  PubMed  Google Scholar 

Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6):1346–1359

CAS  PubMed  Article  Google Scholar 

Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000

CAS  PubMed  Article  Google Scholar 

Durant S, Furlan M (2014) Measuring response saturation in human MT and MST as a function of motion density. J vis 14(8):19–19

PubMed  Article  Google Scholar 

Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16(2):268–279

PubMed  Article  Google Scholar 

Eifuku S, Wurtz RH (1998) Response to motion in extrastriate area MSTl: center-surround interactions. J Neurophysiol 80(1):282–296

CAS  PubMed  Article  Google Scholar 

Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37(4):1315–1328

PubMed  Article  Google Scholar 

Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207

CAS  PubMed  Article  Google Scholar 

Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

CAS  PubMed  Article  Google Scholar 

Francis NA, Winkowski DE, Sheikhattar A, Armengol K, Babadi B, Kanold PO (2018) Small networks encode decision-making in primary auditory cortex. Neuron 97(4):885–897

CAS  PubMed 

留言 (0)

沒有登入
gif