A guideline proposal for mice preparation and care in 18F-FDG PET imaging

Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J. 2001;42(3):219–32. https://doi.org/10.1093/ilar.42.3.219.

CAS  Article  PubMed  Google Scholar 

Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33. https://doi.org/10.1073/pnas.97.16.9226.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuntner C, Stout D. Quantitative preclinical PET imaging: opportunities and challenges. Front Phys. 2014;2(12):1–12. https://doi.org/10.3389/fphy.2014.00012.

Article  Google Scholar 

Fueger BJ, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006;47(6):999–1006.

CAS  PubMed  Google Scholar 

Wong K-P, Sha W, Zhang X, Huang S-C. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 2011;52(5):800–7. https://doi.org/10.2967/jnumed.110.085092.EFFECTS.

Article  PubMed  Google Scholar 

Mannheim JG, et al. Reproducibility and comparability of preclinical PET imaging data: a multicenter small-animal PET study. J Nucl Med. 2019;60(10):1483–91. https://doi.org/10.2967/jnumed.118.221994.

CAS  Article  PubMed  Google Scholar 

McDougald W, et al. Standardization of preclinical PET/CT imaging to improve quantitative accuracy, precision and reproducibility: a multi-center study. J Nucl Med. 2020;61(3):461–8. https://doi.org/10.2967/jnumed.119.231308.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Prinz F, Schlange T, Asadullah K. Believe it or not: How much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10(9):712. https://doi.org/10.1038/nrd3439-c1.

CAS  Article  PubMed  Google Scholar 

Stout D, et al. Guidance for methods descriptions used in preclinical imaging papers. Mol Imaging. 2013;12(7):1–15. https://doi.org/10.2310/7290.2013.00055.

Article  PubMed  Google Scholar 

Mannheim JG, et al. Standardization of small animal imaging—current status and future prospects. Mol Imaging Biol. 2018;20:716–31. https://doi.org/10.1007/s11307-017-1126-2.

Article  PubMed  Google Scholar 

NC3Rs, “ARRIVE guidelines,” New ARRIVE guidelines 2.0 release, 2020. https://arriveguidelines.org. Accessed Nov. 18, 2020.

Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. Lancet. 2009;374(9683):86–9. https://doi.org/10.1016/S0140-6736(09)60329-9.

Article  PubMed  Google Scholar 

Macleod M, et al. Biomedical research: increasing value, reducing waste. Lancet. 2014;383(9912):101–4.

Article  Google Scholar 

Ioannidis J. Why most published research findings are false. PLoS Med. 2005;2(8): e124. https://doi.org/10.1371/journal.pmed.0020124.

Article  PubMed  PubMed Central  Google Scholar 

Chalmers I, et al. How to increase value and reduce waste when research priorities are set. Lancet. 2014;383(9912):156–65. https://doi.org/10.1016/S0140-6736(13)62229-1.

Article  PubMed  Google Scholar 

Lammertsma AA. Role of human and animal PET studies in drug development. Int Cong Ser 2004;1265(C):3–11. https://doi.org/10.1016/j.ics.2004.03.026.

Yao R, Lecomte R, Crawford ES. Small-ANIMAL PET: What is it, and why do we need it? J Nucl Med Technol. 2012;40(3):157–65. https://doi.org/10.2967/jnmt.111.098632.

Article  PubMed  Google Scholar 

Bouter C, Bouter Y. 18F-FDG-PET in mouse models of Alzheimer’s disease. Front Med (Lausanne) 2019;6:71. https://doi.org/10.3389/fmed.2019.00071.

Dearling J, et al. Analysis of the regional uptake of radiolabeled deoxyglucose analogs in human tumor xenografts. J Nucl Med. 2004;45(1):101–7.

CAS  PubMed  Google Scholar 

Abbey CK, et al. In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA. 2004;101(31):11438–43. https://doi.org/10.1073/pnas.0404396101.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bjurberg M, Kjellén E, Ohlsson T, Ridderheim M, Brun E. FDG-PET in cervical cancer: Staging, re-staging and follow-up. Acta Obstet Gynecol Scand. 2007;86(11):1385–91. https://doi.org/10.1080/00016340701625388.

Article  PubMed  Google Scholar 

Adam JA, et al. EANM/SNMMI practice guideline for [18F]FDG PET/CT external beam radiotherapy treatment planning in uterine cervical cancer v1.0. Eur J Nucl Med Mol Imaging. 2021;48(4):1188–99. https://doi.org/10.1007/s00259-020-05112-2/Published.

Article  PubMed  Google Scholar 

Aliaga A, et al. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol. 2004;31(6):761–70. https://doi.org/10.1016/j.nucmedbio.2004.02.011.

CAS  Article  PubMed  Google Scholar 

Rau FC, et al. O-(2-[18F]fluoroethyl)-L-tyrosine (FET): A tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging. 2002;29(8):1039–46. https://doi.org/10.1007/s00259-002-0821-6.

CAS  Article  PubMed  Google Scholar 

Zanzonico P, et al. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging. 2004;31(1):117–28. https://doi.org/10.1007/s00259-003-1322-y.

Article  PubMed  Google Scholar 

Osborne DR, Kuntner C, Berr S, Stout D. Guidance for efficient small animal imaging quality control. Mol Imaging Biol. 2017;19(4):485–98. https://doi.org/10.1007/s11307-016-1012-3.

Article  PubMed  Google Scholar 

Gouveia K, Hurst JL. Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Sci Rep. 2019;9(1):20305. https://doi.org/10.1038/s41598-019-56860-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cao J, Zhang LN, Zhao ZJ. Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic food deprivation. J Therm Biol. 2009;34(6):290–8. https://doi.org/10.1016/j.jtherbio.2009.03.006.

Article  Google Scholar 

Prior H, Ewart L, Bright J, Valentin JP. Refinement of the charcoal meal study by reduction of the fasting period. Altern Lab Anim. 2012;40(2):99–107. https://doi.org/10.1177/026119291204000209.

CAS  Article  PubMed  Google Scholar 

Baumans V, van Loo PLP. How to improve housing conditions of laboratory animals: The possibilities of environmental refinement. Vet J. 2013;195(1):24–32. https://doi.org/10.1016/j.tvjl.2012.09.023.

CAS  Article  PubMed  Google Scholar 

Harkness JE, Turner PV, VandeWoude S, Wheler CL. Biology and medicine of rabbits and rodents, 5th ed. Blackwell, 2010.

Hubrecht R, Kirkwood J. The UFAW handbook on the care and management of laboratory and other research animals, 8th ed. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781444318777.

Balaban RS, Hampshire VA. Challenges in small animal noninvasive imaging. ILAR J. 2001;42(3):248–62. https://doi.org/10.1093/ilar.42.3.248.

CAS  Article  PubMed  Google Scholar 

Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys. 2015;2(1):31. https://doi.org/10.1186/s40658-015-0135-y.

Article  PubMed  PubMed Central  Google Scholar 

Szentirmai É, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R467–77. https://doi.org/10.1152/ajpregu.00557.2009.

CAS  Article  PubMed  Google Scholar 

Ms C, Lynch C. Circadian variation of strain differences in body temperature and activity in mice. Physiol Behav. 1981;27(6):1045–9. https://doi.org/10.1016/0031-9384(81)90368-1.

Article  Google Scholar 

Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D. The full expression of fasting-induced torpor requires β3-adrenergic receptor signaling. J Neurosci. 2006;26(1):241–5. https://doi.org/10.1523/JNEUROSCI.3721-05.2006.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Taylor DK. Study of two devices used to maintain normothermia in rats and mice during general anesthesia. J Am Assoc Lab Anim Sci JAALAS. 2007;46(5):37–41.

CAS  PubMed  Google Scholar 

Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse anesthesia: the art and science. ILAR J. 2021;62(1–2):238–73. https://doi.org/10.1093/ilar/ilab016.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Suckow C, Kuntner C, Chow P, Silverman R, Chatziioannou A, Stout D. Multimodality rodent imaging chambers for use under barrier conditions with gas anesthesia. Mol Imaging Biol. 2009;11(2):100–6. https://doi.org/10.1007/s11307-008-0165-0.

Article  PubMed  Google Scholar 

Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF. Fasting of mice: a review. Lab Anim. 2013;47(4):225–40. https://doi.org/10.1177/0023677213501659.

CAS  Article  PubMed  Google Scholar 

Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007;28(2–3):61–71. https://doi.org/10.1016/j.yfrne.2007.03.001.

CAS  Article  PubMed  Google Scholar 

Dolat E, Sazgarnia A. The effect of fasting on positron emission tomography (PET) imaging: a narrative review photodynamic therapy (PDT) view project hyperspectral imaging for monitoring of food process view project. J Fasting Health. 2014;2(4):164–9.

Google Scholar 

Woo SK, et al. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol. 2008;35(1):143–50. https://doi.org/10.1016/j.nucmedbio.2007.10.003.

留言 (0)

沒有登入
gif