Relationship between ozone and biologically relevant UV at 4 NDACC sites

Madronich, S., McKenzie, R. L., Björn, L. O., & Caldwell, M. M. (1998). Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Journal of Photochemistry and Photobiology B: Biology, 46(1), 5–19. https://doi.org/10.1016/S1011-1344(98)00182-1

CAS  Article  Google Scholar 

UNEP (1998). Environmental effects of ozone depletion: 1998 assessment, [J. C. v. d. Leun, X. Tang, & M. Tevin (Eds.)]. United Nations Environment Programme, Vol. ISBN 92–807–1724–3. UNEP, Nairobi.

De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J., Bernhard, G., Blumenstock, T., Braathen, G., Hannigan, J., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., & Strahan, S. (2018). The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmospheric Chemistry and Physics, 18(7), 4935–4964. https://doi.org/10.5194/acp-18-4935-2018

CAS  Article  Google Scholar 

WHO (2002). Global solar UV Index: A practical guide. Geneva: World Health Organisation (WHO), World Meteorological Organisation (WMO), United Nations Environment Program (UNEP), and International Commission on Non-Ionising Radiation Protection (ICNRP), https://apps.who.int/iris/handle/10665/42459.

Latarjet, R. (1935). Influences des variations de l’ozone atmospherique sur l’activite biologique du raynnoment solaire. Rev. Opt. Theor. Instrum., 14, 398–414.

Google Scholar 

Coblentz, W. W., Stair, R., & Hogue, J. M. (1931). The spectral erythemic reaction of the human skin to ultraviolet radiation. PNAS, Proceedings of the National Academy of Sciences, USA, 17, 410–405.

Article  Google Scholar 

National Research Council. (1975). Environmental Impact of Stratospheric Flight. National Academies Press.

Google Scholar 

Molina, M. J., & Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249(5460), 810–812. https://doi.org/10.1038/249810a0

CAS  Article  Google Scholar 

Urbach, F., Davies, R. E., & Berger, E. (1975). Part 1: Ultraviolet Radiation Effects. In D. S. Nachtwey, M. M. Caldwell, & H. R. Biggs (Eds.), CIAP Monograph 5: Impacts of Climate Change, DOT-TST-75–55. Washington, DC: U.S. Department of Transportation, Climatic Impact Assessment Program (CIAP)

Rundel, R. D., & Nachtwey, D. S. (1978). Skin cancer and ultraviolet radiation. Photochemistry and Photobiology, 28(3), 345–356. https://doi.org/10.1111/j.1751-1097.1978.tb07717.x

CAS  Article  PubMed  Google Scholar 

Gerstl, S. A. W., Zardecki, A., & Wiser, H. L. (1981). Biologically damaging radiation amplified by ozone depletions. Nature, 294(5839), 352–354. https://doi.org/10.1038/294352a0

CAS  Article  Google Scholar 

Stordal, F., Hov, & I. S. A. Isaksen (1982). The effect of perturbation of the total ozone column due to CFC on the spectral distribution of UV fluxes and the damaging UV doses at the ocean surface: A model study. In J. Calkins (Ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems. New York: Plenum

Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016), 207–210. https://doi.org/10.1038/315207a0

CAS  Article  Google Scholar 

Madronich, S. (1993). UV radiation in the natural and perturbed atmosphere. In M. Tevini (Ed.), UV-B Radiation and Ozone Depletion: Effects on Humans, Animals, Plants, Microorganisms, and Materials (pp. 17–69). Lewis Publishers.

Google Scholar 

Madronich, S. (1993). The atmosphere and UV-B radiation at ground level. In A. R. Young, L. O. Bjorn, J. Moan, & W. Nultsch (Eds.), Environmental UV Photobiology (pp. 1–39). Plenum Press.

Google Scholar 

Brasseur, G., Boville, B. W., Bruhl, C., Caldwell, M. M., Connell, P. S., DeRudder, A., Douglass, A., Dymnikov, V., Fisher, D. A., Frederick, J. F., Garcia, R., Granier, C., Hennig, R., Hitchman, M., Isaksen, I., Jackman, C. H., Ko, M., Madronich, S., . . . Zadarozhny, A. (1989). Theoretical predictions. In Scientific Assessment of Ozone Depletion, Global Ozone Reasearch and Monitoring Project, Report no. 20, 282–399: WMO https://csl.noaa.gov/assessments/ozone/1989/report.html

Booth, C. R., & Madronich, S. (1994). Radiation amplification factors: Improved formulation accounts for large increases in ultraviolet radiation associated with Antarctic ozone depletion. In Ultraviolet Radiation and Biological Researach in Antarctica, 39–42. Washington, D.C.

Madronich, S., McKenzie, R. L., Caldwell, M. M., & Björn, L. O. (1995). Changes in ultraviolet radiation reaching the Earth’s surface. Ambio, 24(3), 143–152.

Google Scholar 

McKenzie, R. L., Aucamp, P. J., Bais, A. F., Bjoern, L. O., Ilyas, M., & Madronich, S. (2011). Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 10(2), 182–198. https://doi.org/10.1039/c0pp90034f

CAS  Article  Google Scholar 

Micheletti, M. I., & Piacentini, R. D. (2003). Sensitivity of biologically active UV radiation to stratospheric ozone changes: Effect of action spectrum shape and wavelength range. Photochemistry and Photobiology, 78(5), 456–461. https://doi.org/10.1562/0031-8655(2003)078%3c0456:sobaur%3e2.0.co;2

CAS  Article  PubMed  Google Scholar 

Seckmeyer, G., Bais, A., Bernhard, G., Blumthaler, M., Booth, C. R., Lantz, K., & McKenzie, R. L. (2008). Instruments to measure solar ultraviolet irradiance. Part 2: Broadband instruments measuring erythemally weighted solar irradiance. Vol. WMO TD No. 1289, WMO, Global Atmospheric Watch, Vol. 164. World Meteorological Organisation, Geneva.

McKenzie, R. L., Matthews, W. A., & Johnston, P. V. (1991). The relationship between erythemal UV and ozone derived from spectral irradiance measurements. Geophysical Research Letters, 18(12), 2269–2272. https://doi.org/10.1029/91GL02786

CAS  Article  Google Scholar 

Bodhaine, B. A., Dutton, E. G., Hofmann, D. J., McKenzie, R. L., & Johnston, P. V. (1997). Spectral UV measurements at Mauna Loa: July 1995-July 1996. Journal of Geophysical Research, 102(D15), 19–273. https://doi.org/10.1029/97JD01391

Article  Google Scholar 

Blumthaler, M., Salzgeber, M., & Ambach, W. (1995). Ozone and ultraviolet-B irradiances: Experimental determination of the radiation amplification factor. Photochemistry and Photobiology, 61(2), 159–162. https://doi.org/10.1111/j.1751-1097.1995.tb03954.x

CAS  Article  Google Scholar 

Antón, M., Cazorla, A., Mateos, D., Costa, M. J., Olmo, F. J., & Alados-Arboledas, L. (2015). Sensitivity of UV erythemal radiation to total ozone changes under different sky conditions: Results for Granada, Spain. Photochemistry and Photobiology, 91, 215–219. https://doi.org/10.1111/php.12539 Epub 2015 Nov 4.

CAS  Article  Google Scholar 

Hall, E. S. (2017). Comparison of five modeling approaches to quantify and estimate the effect of clouds on the radiation amplification factor (RAF) for solar ultraviolet radiation. Atmosphere. https://doi.org/10.3390/atmos8080153

Article  PubMed  PubMed Central  Google Scholar 

Molina, L. T., & Molina, M. J. (1986). Absolute absorption cross-sections of ozone in the 185 to 350 nm wavelength range. Journal of Geophysical Research, 91(D13), 14501–14508.

CAS  Article  Google Scholar 

CIE (1998). Erythema reference action spectrum and standard erythema dose. CIE Standard, Vol. ISO 17166:1999(E), CIE DS 007.1/E-1998. Commission Internationale de l'Eclairage, Vienna, Austria.

Setlow, R. B., Grist, E., Thompson, K., & Weatherhead, A. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, USA, 90, 6666–6670.

CAS  Article  Google Scholar 

Bouillon, R., Eisman, J., Garabedian, M., Holick, M., Kleinschmidt, J., Suda, T., Terenetskaya, I., & Webb, A. (2006). Action spectrum for the production of previtamin D3 in human skin, 2006. UDC: 612.014.481–06 ed., Vol. 174:2006. CIE, Vienna.

McKenzie, R. L., Liley, J. B., & Björn, L. O. (2009). UV radiation: Balancing risks and benefits. Photochemistry and Photobiology, 85, 88–98. https://doi.org/10.1111/j.1751-1097.2008.00400.x

CAS  Article  PubMed  Google Scholar 

McKinlay, A. F., & Diffey, B. L. (1987). A reference action spectrum for ultra-violet induced erythema in human skin. In W. F. Passchier & B. F. M. Bosnajakovic (Eds.), Human Exposure to Ultraviolet Radiation: Risks and Regulations (pp. 83–87). Elsevier.

Google Scholar 

Webb, A. R., Slaper, H., Koepke, P., & Schmalwieser, A. W. (2011). Know your standard: Clarifying the cie erythema action spectrum. Photochemistry and Photobiololgy. https://doi.org/10.1111/j.1751-1097.2010.00871.x

Article  Google Scholar 

Bais, A. F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S., & Tourpali, K. (2015). Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 14(1), 19–52. https://doi.org/10.1039/C4PP90032D

CAS  Article  Google Scholar 

Bernhard, G., Mayer, B., Seckmeyer, G., & Moise, A. (1997). Measurements of spectral solar UV irradiance in tropical Australia. Journal of Geophysical Research, 102(D7), 8719–8730.

CAS  Article  Google Scholar 

Norval, M., Björn, L. O., & de Gruijl, F. R. (2009). Is the action spectrum for UV-induced production of previtamin D3 in human skin correct? Photochemical & Photobiological Sciences, 9, 11–17. https://doi.org/10.1039/B9PP00012G

Article  Google Scholar 

Holick, M. (1995). Environmental factors that influence the cutaneous production of vitamin D. The American Journal of Clinical Nutrition, 61, 638S-645S. https://doi.org/10.1093/ajcn/61.3.638S

CAS  Article  PubMed  Google Scholar 

Young, A. R., Morgan, K. A., Harrison, G. I., Lawrence, K. P., Petersen, B., Wulf, H. C., & Philipsen, P. A. (2021). A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. PNAS, Proceedings of the National Academy of Sciences, USA, 118(40), e2015867118. https://doi.org/10.1073/pnas.2015867118

CAS  Article  Google Scholar 

McKenzie, R. L., Johnston, P. V., & Seckmeyer, G. (1997). UV spectro-radiometry in the network for the detection of stratospheric change (NDSC). In C. S. Zerefos & A. F. Bais (Eds.), Solar ultraviolet radiation modelling, measurements and effects (pp. 279–287). Springer-Verlag.

Chapter  Google Scholar 

McKenzie, R., Kotkamp, M., Liley, B., Disterhoft, P., & Bernhard, G. Long term variability and cloud effects in UV irradiances from NDACC spectrometers. In R. McKenzie (Ed.), NIWA UV Workshop. UV Radiation: Effects on Human Health and the Environment, Wellington, New Zealand, 4–6 April 2018 https://www.niwa.co.nz/atmosphere/uv-ozone/uv-science-workshops/2018-uv-workshop

Stamnes, K., Slusser, J., & Bowen, M. (1991). Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Applied Optics, 30, 4418–4426.

CAS  Article  Google Scholar 

Madronich, S., & Flocke, S. (1998). The role of solar radiation in atmospheric chemistry. In P. Boule (Ed.), Handbook of Environmental Chemistry (pp. 1–26). Springer-Verlag.

Google Scholar 

Bodeker, G. E., Tradowsky, J. S., Kremser, S., Schwertheim, A., & Lewis, J. (2021). A global total column ozone climate data record. Earth System Science Data, 13, 3885–3906. https://doi.org/10.5194/essd-13-3885-2021

Article  Google Scholar 

McKenzie, R., Liley, B., & Disterhoft, P. Peak UV: Spectral contributions from cloud enhancements. In International Radiation Symposium, Auckland, NZ, 20 April 2016 (Vol. 1810, AIP Conference Proceedings (2017)): AIP. https://doi.org/10.1063/1.4975570

Gröbner, J., Schill, H., Egli, L., & Stübi, R. (2021). Consistency of total column ozone measurements between the Brewer and Dobson spectroradiometers of the LKO Arosa and PMOD/WRC Davos. Atmospheric Measurement Techniques, 14, 3319–3331. https://doi.org/10.5194/amt-14-3319-2021

CAS  Article  Google Scholar 

Morgenstern, O., Frith, S. M., Bodeker, G. E., Fioletov, V., & van der A, R. J. (2021). Reevaluation of total-column ozone trends and of the effective radiative forcing of ozone-depleting substances. Geophysical Research Letters. https://doi.org/10.1029/2021gl095376

Article  Google Scholar 

Basher, R. E. (1982). Review of the Dobson Spectrophotometer and its Accuracy. WMO Global Ozone Research and Monitoring Project. WMO Report No. 13.

Vanicek, K. (2006). Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech. Atmospheric Chemistry and Phyics, 6, 5163–5171. https://doi.org/10.5194/acp-6-5163-2006

CAS  Article  Google Scholar 

McKenzie, R., Bernhard, G., Liley, B., Disterhoft, P., Rhodes, S., Bais, A., Morgenstern, O., Newman, P., Oman, L., Brogniez, C., & Simic, S. (2019). Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models. Scientific Reports, 9(1), 12332. https://doi.org/10.1038/s41598-019-48625-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zempila, M. M., van Geffen, J. H. G. M., Taylor, M., Fountoulakis, I., Koukouli, M. E., & van Weele, M. (2017). TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece. Atmospheric Chemistry and Physics, 17, 7157–7174. https://doi.org/10.5194/acp-17-7157-2017

CAS  Article  Google Scholar 

Fitzpatrick, T. B. (1988). The validity and practicality of Sun-reactive skin types I through VI. Archives of Dermatology, 124, 869–871.

CAS  Article  Google Scholar 

McKenzie, R. L., Bodeker, G. E., Scott, G., & Slusser, J. (2006). Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites. Photochemical & Photobiological Sciences, 5(3), 343–352. https://doi.org/10.1039/b510943d

CAS  Article  Google Scholar

留言 (0)

沒有登入
gif