Conformational buffering underlies functional selection in intrinsically disordered protein regions

Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

CAS  PubMed  Article  Google Scholar 

van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tompa, P., Davey, N. E., Gibson, T. J. & Babu, M. M. A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 (2014).

CAS  PubMed  Article  Google Scholar 

Brown, C. J., Johnson, A. K., Dunker, A. K. & Daughdrill, G. W. Evolution and disorder. Curr. Opin. Struct. Biol. 21, 441–446 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Daughdrill, G. W., Narayanaswami, P., Gilmore, S. H., Belczyk, A. & Brown, C. J. Dynamic behavior of an intrinsically unstructured linker domain is conserved in the face of negligible amino acid sequence conservation. J. Mol. Evol. 65, 277–288 (2007).

CAS  PubMed  Article  Google Scholar 

Beh, L. Y., Colwell, L. J. & Francis, N. J. A core subunit of polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proc. Natl Acad. Sci. USA 109, E1063–E1071 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Das, R. K., Huang, Y., Phillips, A. H., Kriwacki, R. W. & Pappu, R. V. Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling. Proc. Natl Acad. Sci. USA 113, 5616–5621 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zarin, T. et al. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. eLife 8, e46883 (2019).

Buske, P. J., Mittal, A., Pappu, R. V. & Levin, P. A. An intrinsically disordered linker plays a critical role in bacterial cell division. Semin. Cell Dev. Biol. 37, 3–10 (2015).

CAS  PubMed  Article  Google Scholar 

Borcherds, W. et al. Optimal affinity enhancement by a conserved flexible linker controls p53 mimicry in MdmX. Biophys. J. 112, 2038–2042 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sherry, K. P., Das, R. K., Pappu, R. V. & Barrick, D. Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor. Proc. Natl Acad. Sci. USA 114, E9243–E9252 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

CAS  PubMed  Article  Google Scholar 

Ayrapetov, M. K. et al. Conformational basis for SH2-Tyr(P)527 binding in Src inactivation. J. Biol. Chem. 281, 23776–23784 (2006).

CAS  PubMed  Article  Google Scholar 

Dyla, M. & Kjaergaard, M. Intrinsically disordered linkers control tethered kinases via effective concentration. Proc. Natl Acad. Sci. USA 117, 21413–21419 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cordeiro, T. N. et al. Interplay of protein disorder in retinoic acid receptor heterodimer and its corepressor regulates gene expression. Structure 27, 1270–1285 (2019).

CAS  PubMed  Article  Google Scholar 

Brodsky, S. et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79, 459–471 (2020).

CAS  PubMed  Article  Google Scholar 

Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

Huang, Q., Li, M., Lai, L. & Liu, Z. Allostery of multidomain proteins with disordered linkers. Curr. Opin. Struct. Biol. 62, 175–182 (2020).

CAS  PubMed  Article  Google Scholar 

Jencks, W. P. On the attribution and additivity of binding energies. Proc. Natl Acad. Sci. USA 78, 4046–4050 (1981).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhou, H. X. The affinity-enhancing roles of flexible linkers in two-domain DNA-binding proteins. Biochemistry 40, 15069–15073 (2001).

CAS  PubMed  Article  Google Scholar 

Zhou, H. X. Polymer models of protein stability, folding, and interactions. Biochemistry 43, 2141–2154 (2004).

CAS  PubMed  Article  Google Scholar 

Morrison, G. & Thirumalai, D. Semiflexible chains in confined spaces. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 11924 (2009).

Article  CAS  Google Scholar 

van Dongen, E. M. W. M. et al. Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J. Am. Chem. Soc. 129, 3494–3495 (2007).

PubMed  Article  CAS  Google Scholar 

Bertagna, A., Toptygin, D., Brand, L. & Barrick, D. The effects of conformational heterogeneity on the binding of the Notch intracellular domain to effector proteins: a case of biologically tuned disorder. Biochem. Soc. Trans. 36, 157–166 (2008).

CAS  PubMed  Article  Google Scholar 

Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 8183–8188 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Marsh, J. A. & Forman-Kay, J. D. Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 98, 2383–2390 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Müller-Späth, S. et al. From the cover: charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 14609–14614 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Van Rosmalen, M., Krom, M. & Merkx, M. Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry 56, 6565–6574 (2017).

PubMed  Article  CAS  Google Scholar 

Sorensen, C. S. & Kjaergaard, M. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proc. Natl Acad. Sci. USA 116, 23124–23131 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kjaergaard, M., Glavina, J. & Chemes, L. B. Predicting the effect of disordered linkers on effective concentrations and avidity with the “Ceff calculator” app. Methods Enzymol. 647, 145–171 (2021).

CAS  PubMed  Article  Google Scholar 

Tokuriki, N., Oldfield, C. J., Uversky, V. N., Berezovsky, I. N. & Tawfik, D. S. Do viral proteins possess unique biophysical features? Trends Biochem. Sci 34, 53–59 (2009).

CAS  PubMed  Article  Google Scholar 

Gitlin, L., Hagai, T., LaBarbera, A., Solovey, M. & Andino, R. Rapid evolution of virus sequences in intrinsically disordered protein regions. PLoS Pathog. 10, e1004529 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hagai, T., Azia, A., Babu, M. M. & Andino, R. Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Rep. 7, 1729–1739 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Davey, N. E., Trave, G. & Gibson, T. J. How viruses hijack cell regulation. Trends Biochem. Sci. 36, 159–169 (2011).

CAS  PubMed  Article  Google Scholar 

Chemes, L. B., de Prat-Gay, G. & Sanchez, I. E. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions. Curr. Opin. Struct. Biol. 32, 91–101 (2015).

CAS  PubMed  Article  Google Scholar 

King, C. R., Zhang, A., Tessier, T. M., Gameiro, S. F. & Mymryk, J. S. Hacking the cell: network intrusion and exploitation by adenovirus E1A. MBio 9, e00390-18 (2018).

Liu, X. & Marmorstein, R. Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes D

留言 (0)

沒有登入
gif