HER3 PET Imaging Predicts Response to Pan Receptor Tyrosine Kinase Inhibition Therapy in Gastric Cancer

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

PubMed  Google Scholar 

Murad AM, Santiago FF, Petroianu A, Rocha PR, Rodrigues MA, Rausch M (1993) Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric cancer. Cancer 72:37–41

CAS  Article  Google Scholar 

Wagner AD, Unverzagt S, Grothe W, Kleber G, Grothey A, Haerting J, Fleig WE (2010) Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev (3):CD004064. https://doi.org/10.1002/14651858.CD004064.pub3

Matsuoka T, Yashiro M (2015) Recent advances in the HER2 targeted therapy of gastric cancer. World J Clin Cases 3:42–51

Article  Google Scholar 

Zhang Z, Wang J, Ji D et al (2014) Functional genetic approach identifies MET, HER3, IGF1R, INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer. Clin Cancer Res 20:4559–4573

CAS  Article  Google Scholar 

Abrahao-Machado LF, Scapulatempo-Neto C (2016) HER2 testing in gastric cancer: an update. World J Gastroenterol 22:4619–4625

CAS  Article  Google Scholar 

Bang YJ, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697

CAS  Article  Google Scholar 

Hecht JR, Bang YJ, Qin SK et al (2016) Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC–a randomized phase III trial. J Clin Oncol 34:443–451

CAS  Article  Google Scholar 

Yonesaka K, Kudo K, Nishida S et al (2015) The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget 6:33602–33611

Article  Google Scholar 

O’Neill F, Madden SF, Clynes M et al (2013) A gene expression profile indicative of early stage HER2 targeted therapy response. Mol Cancer 12:69

CAS  Article  Google Scholar 

Yang Z, Hackshaw A, Feng Q et al (2017) Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: a meta-analysis. Int J Cancer 140:2805–2819

CAS  Article  Google Scholar 

Janjigian YY, Viola-Villegas N, Holland JP et al (2013) Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J Nucl Med 54:936–943

CAS  Article  Google Scholar 

Keller S, Zwingenberger G, Ebert K et al (2018) Effects of trastuzumab and afatinib on kinase activity in gastric cancer cell lines. Mol Oncol 12:441–462

CAS  Article  Google Scholar 

Collins DM, Conlon NT, Kannan S, Verma CS, Eli LD, Lalani AS, Crown J (2019) Preclinical characteristics of the irreversible pan-HER kinase inhibitor neratinib compared with lapatinib: implications for the treatment of HER2-positive and HER2-mutated breast cancer. Cancers (Basel) 11(6):737. https://doi.org/10.3390/cancers11060737

Yang JC, Sequist LV, Geater SL et al (2015) Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 16:830–838

CAS  Article  Google Scholar 

Nakata S, Fujita M, Nakanishi H (2019) Efficacy of afatinib and lapatinib against HER2 gene-amplified trastuzumab-sensitive and -resistant human gastric cancer cells. Anticancer Res 39:5927–5932

CAS  Article  Google Scholar 

Martin N, Isambert N, Gomez-Roca C et al (2018) Phase I trial of afatinib and 3-weekly trastuzumab with optimal anti-diarrheal management in patients with HER2-positive metastatic cancer. Cancer Chemother Pharmacol 82:979–986

CAS  Article  Google Scholar 

Wehrenberg-Klee E, Sinevici N, Nesti S et al (2021) HER3 PET imaging identifies dynamic changes in HER3 in response to HER2 inhibition with lapatinib. Mol Imaging Biol 23:930–940

CAS  Article  Google Scholar 

Cao GD, Chen K, Xiong MM, Chen B (2016) HER3, but not HER4, plays an essential role in the clinicopathology and prognosis of gastric cancer: a meta-analysis. PLoS ONE 11:e0161219

Article  Google Scholar 

Wehrenberg-Klee E, Turker NS, Heidari P et al (2016) Differential receptor tyrosine kinase PET imaging for therapeutic guidance. J Nucl Med 57:1413–1419

CAS  Article  Google Scholar 

Leto SM, Sassi F, Catalano I et al (2015) Sustained inhibition of HER3 and EGFR is necessary to induce regression of HER2-amplified gastrointestinal carcinomas. Clin Cancer Res 21:5519–5531

CAS  Article  Google Scholar 

Sergina NV, Rausch M, Wang D et al (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445:437–441

CAS  Article  Google Scholar 

Sinevici N, Ataeinia B, Zehnder V et al (2020) HER3 differentiates basal from claudin type triple negative breast cancer and contributes to drug and microenvironmental induced resistance. Front Oncol 10:554704

Article  Google Scholar 

Larimer BM, Phelan N, Wehrenberg-Klee E, Mahmood U (2017) Phage display selection, in vitro characterization, and correlative PET imaging of a novel HER3 peptide. Mol Imaging Biol 20(2):300–308. https://doi.org/10.1007/s11307-017-1106-6

CAS  Article  Google Scholar 

Leece AK, Heidari P, Yokell DL, Mahmood U (2013) A container closure system that allows for greater recovery of radiolabeled peptide compared to the standard borosilicate glass system. Appl Radiat Isot 80:99–102

CAS  Article  Google Scholar 

Esfahani SA, Callahan C, Rotile NJ, Heidari P, Mahmood U, Caravan PD, Grant AK, Yen YF (2022) Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging for evaluation of early response to tyrosine kinase inhibition therapy in gastric cancer. Mol Imaging Biol. https://doi.org/10.1007/s11307-022-01727-z

Heidari P, Esfahani SA, Turker NS et al (2015) Imaging of secreted extracellular periostin, an important marker of invasion in the tumor microenvironment in esophageal cancer. J Nucl Med 56:1246–1251

CAS  Article  Google Scholar 

Heidari P, Deng F, Esfahani SA et al (2015) Pharmacodynamic imaging guides dosing of a selective estrogen receptor degrader. Clin Cancer Res 21:1340–1347

CAS  Article  Google Scholar 

Amin DN, Sergina N, Ahuja D et al (2010) Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med 2:16ra17

Article  Google Scholar 

Montero-Conde C, Ruiz-Llorente S, Dominguez JM et al (2013) Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 3:520–533

CAS  Article  Google Scholar 

der Houven M-V, van Oordt CW, McGeoch A, Bergstrom M et al (2019) Immuno-PET imaging to assess target engagement: experience from (89)Zr-anti-HER3 mAb (GSK2849330) in patients with solid tumors. J Nucl Med 60:902–909

Article  Google Scholar 

Lockhart AC, Liu Y, Dehdashti F et al (2016) Phase 1 evaluation of [(64)Cu]DOTA-patritumab to assess dosimetry, apparent receptor occupancy, and safety in subjects with advanced solid tumors. Mol Imaging Biol 18:446–453

CAS  Article  Google Scholar 

Bensch F, Lamberts LE, Smeenk MM et al (2017) (89)Zr-lumretuzumab PET imaging before and during HER3 antibody lumretuzumab treatment in patients with solid tumors. Clin Cancer Res 23:6128–6137

CAS  Article  Google Scholar 

Pool M, Kol A, de Jong S, de Vries EGE, Lub-de Hooge MN, Terwisscha van Scheltinga AGT (2017) (89)Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. MAbs 9:1370–1378

CAS  Article  Google Scholar 

Park JG, Frucht H, LaRocca RV et al (1990) Characteristics of cell lines established from human gastric carcinoma. Cancer Res 50:2773–2780

CAS  PubMed  Google Scholar 

Ebert K, Mattes J, Kunzke T, Zwingenberger G, Luber B (2019) MET as resistance factor for afatinib therapy and motility driver in gastric cancer cells. PLoS ONE 14:e0223225

CAS  Article  Google Scholar 

Huang L, Cai M, Zhang X et al (2017) Combinational therapy of crizotinib and afatinib for malignant pleural mesothelioma. Am J Cancer Res 7:203–217

CAS  PubMed  PubMed Central  Google Scholar 

Torigoe H, Shien K, Takeda T et al (2018) Therapeutic strategies for afatinib-resistant lung cancer harboring HER2 alterations. Cancer Sci 109:1493–1502

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif