Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection

Huang, C., et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet 395: 497–506.

Nagaraja, S., et al. 2022. Inflammasome regulation in driving COVID-19 severity in humans and immune tolerance in bats. Journal of Leukocyte Biology 111: 497–508.

CAS  PubMed  Article  Google Scholar 

Chen, N., et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 395: 507–513.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wu, A., et al. 2020. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe 27: 325–328.

CAS  Article  Google Scholar 

Lu, R., et al. 2020. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395: 565–574.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hoffmann, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 18: 271–280.

Article  Google Scholar 

Xu, X.W., et al. 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARSCov-2) outside of Wuhan, China: retrospective case series. The BMJ 368: m606.

Medzhitov, et al. 2001. Toll-like receptors and innate immunity. Nature Reviews Immunology 1: 135–145.

CAS  PubMed  Article  Google Scholar 

Bauernfeind, et al. 2011. Inflammasomes: Current understanding and open questions. Cellular and Molecular Life Sciences 68: 765–783.

CAS  PubMed  Article  Google Scholar 

Prompetchara, et al. 2020. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology 38: 1–9.

CAS  PubMed  Google Scholar 

Lim, et al. 2016. Human coronaviruses: a review of virus-host interactions. Diseases 4.

Chen, I.Y., et al. 2019. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Frontiers in Microbiology 10: 50.

PubMed  PubMed Central  Article  Google Scholar 

Chen, N., et al. 2017. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 69: 297–304.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ashraf, U.M., et al. 2021. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics 53: 51–60.

CAS  PubMed  Article  Google Scholar 

De Marcken, M., et al. 2019. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Science Signaling 12: eaaw1347.

Olejnik, J., et al. 2018. Toll-like receptor 4 in acute viral infection: too much of a good thing. PLoS Pathog 14: e1007390.

Zhu, J., et al. 2020. Infectious bronchitis virus inhibits activation of the TLR7 pathway, but not the TLR3 pathway. Archives of Virology 165: 2037–2043.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kawasaki, T., and T. Kawai. 2014. Toll-like Kawai receptor signaling pathways. Front Immunol 5:461 Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M Jr, 2006 Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. Journal of Virology 80: 9424–9434.

Zhou, H., et al. 2013. IRAK-M mediates Toll-like receptor/IL-1R-induced NFkappaB activation and cytokine production. EMBO Journal 32: 583–596.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Loo, Y.-M., and M. Gale. 2011. Immune signaling by RIG-I-like receptors. Immunity 34: 680–692.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Seth, R.B., et al. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122: 669–682.

CAS  PubMed  Article  Google Scholar 

Li, H., Y. Wang, M. Ji, F. Pei, Q. Zhao, Y. Zhou, Y. Hong, S. Han, J. Wang, Q. Wang, Q. Li, and Y. Wang. 2020. Transmission routes analysis of SARS-CoV-2: A systematic review and case report. Front Cell Dev Biol. 10 (8): 618.

Article  Google Scholar 

Morrison. J., and A. García-Sastre. 2014. STAT2 signaling and dengue virus infection. JAKSTAT 3: e27715.

Qin, S., et al. 2021. Analyzing master regulators and scRNA-seq of COVID-19 patients reveals an underlying anti-SARS-CoV-2 mechanism of ZNF proteins. Brief Bioinformation 27: bbab118.

Mu, J., et al. 2020. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov 6: 65.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wani, S.A., et al. 2019. Contrasting gene expression profiles of monocytes and lymphocytes from peste-des-petits-ruminants virus infected goats. Frontiers in Immunology 10: 1463.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mehta, P., et al. 2020. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395: 1033–1034.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, C., et al. 2020. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. International Journal of Antimicrobial Agents 55: 105954.

Carvalho, T. 2021. The first 12 months of COVID-19: A timeline of immunological insights. Nature Reviews Immunology 21: 245–256.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kanneganti, T.-D. 2010. Central roles of NLRs and inflammasomes in viral infection. Nature Reviews Immunology 10: 688–698.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Guo, H., et al. 2015. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature Medicine 21: 677–687.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.

CAS  PubMed  Article  Google Scholar 

Hayden, M.S., et al. 2006. NF-κB and the immune response. Oncogene 25: 6758–6780.

CAS  PubMed  Article  Google Scholar 

De Diego, M.L., et al. 2014. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology 88: 913.

Article  CAS  Google Scholar 

Wang, X., et al. 2020. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion.” Cellular & molecular immunology 7: 1–3. https://doi.org/10.1038/s41423-020-0424-9.

Wang, W., et al. 2007. Up-regulation of IL-6 and TNF-alpha induced by SARScoronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Research 128: 1–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun, B., et al. 2017. Dengue virus activates cGAS through the release of mitochondrial DNA. Science and Reports 7: 3594.

Article  CAS  Google Scholar 

Uno, N., and T.M. Ross. 2018. Dengue virus and the host innate immune response. Emerg Microbes Infect 7: 167.

PubMed  PubMed Central  Article  Google Scholar 

Lessler, J., et al. 2009. Incubation periods of acute respiratory viral infections: A systematic review. The Lancet Infectious Diseases 9: 291–300.

PubMed  PubMed Central  Article  Google Scholar 

Sa Ribero, M., et al. 2020. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathogens 16: e1008737.

Cameron, M.J., et al. 2012. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One 7: e45842.

Minakshi, R., et al. 2009. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342.

Blanco-Melo, D., et al. 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181: 1036–1045.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hadjadj, J., et al. 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369: 718–724.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lowery, S.A. 2021. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host & Microbe 29: 1052–1062.

CAS  Article  Google Scholar 

Randall, R.E., and S. Goodbourn. 2008. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology 89: 1–47.

CAS  PubMed  Article  Google Scholar 

Arunachalam, P.S., et al. 2020. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369: 1210–1220.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Israelow, B., et al. 2020. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine 217: e20201241.

Banerjee, A.K., et al. 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 183: 1325-1339.e21.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gordon, D.E., et al. 2020. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Preprint. bioRxiv 03.22.002386.

Xia, H. et al., 2020. Evasion of type I interferon by SARS-CoV-2. Cell Reports 33: 108234.

Lei, X., et al. 2020. Activation and evasion of type I interferon responses by SARS-CoV-2. Nature Communications 11: 3810.

CAS  PubMed  PubMed Central  Article  Google Schola

留言 (0)

沒有登入
gif