Diabetes and Impaired Fracture Healing: A Narrative Review of Recent Literature

Wukich DK. Diabetes and its negative impact on outcomes in orthopaedic surgery. World journal of orthopedics. 2015;6(3):331–9.

PubMed  PubMed Central  Article  Google Scholar 

Centers for Disease Control and Prevention. National Diabetes Statistics Report website. January 18, 2022 2/27/2022]; Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html.

Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Current osteoporosis reports. 2015;13(5):327–35.

PubMed  PubMed Central  Article  Google Scholar 

Ding ZC, et al. Do patients with diabetes have an increased risk of impaired fracture healing? A systematic review and meta-analysis. ANZ J Surgery. 2020;90(7-8):1259–64.

Article  Google Scholar 

Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Della Rocca GJ, Mehta S, McKinley T, Wang Z, Steen RG. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775.

PubMed  Article  Google Scholar 

Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60(7):1163–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schwartz AV. Diabetes, bone and glucose-lowering agents: clinical outcomes. Diabetologia. 2017;60(7):1170–9.

CAS  PubMed  Article  Google Scholar 

Laurent MR, et al. Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. Osteoporosis International. 2016;27(11):3227–37.

CAS  PubMed  Article  Google Scholar 

Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover–a systematic review and meta-analysis. European journal of endocrinology. 2017;176(3):R137–57.

CAS  PubMed  Article  Google Scholar 

Dhaliwal R, Ewing SK, Vashishth D, Semba RD, Schwartz AV. Greater carboxy-methyl-lysine is associated with increased fracture risk in type 2 diabetes. Journal of Bone and Mineral Research. 2022;37(2):265–72.

CAS  PubMed  Article  Google Scholar 

Samakkarnthai P, Sfeir JG, Atkinson EJ, Achenbach SJ, Wennberg PW, Dyck PJ, Tweed AJ, Volkman TL, Amin S, Farr JN, Vella A, Drake MT, Khosla S. Determinants of bone material strength and cortical porosity in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism. 2020;105(10):e3718–29.

Article  Google Scholar 

Henderson S, Ibe I, Cahill S, Chung YH, Lee FY. Bone quality and fracture-healing in type-1 and type-2 diabetes mellitus. JBJS. 2019;101(15):1399–410.

Article  Google Scholar 

Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012;8(3):133–43.

CAS  PubMed  Article  Google Scholar 

Lafage-Proust M-H, Roche B, Langer M, Cleret D, vanden Bossche A, Olivier T, Vico L. Assessment of bone vascularization and its role in bone remodeling. BoneKEy reports. 2015;4:662.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bragdon BC, Bahney CS. Origin of reparative stem cells in fracture healing. Current osteoporosis reports. 2018;16(4):490–503.

PubMed  PubMed Central  Article  Google Scholar 

Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone. 2021;143:115764.

PubMed  Article  Google Scholar 

Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. Role of TNF-α in early-stage fracture healing under normal and diabetic conditions. Computer Methods and Programs in Biomedicine. 2022;213:106536.

PubMed  Article  Google Scholar 

Marin C, Luyten FP, van der Schueren B, Kerckhofs G, Vandamme K. The impact of type 2 diabetes on bone fracture healing. Frontiers in Endocrinology. 2018;9:6.

PubMed  PubMed Central  Article  Google Scholar 

Alharbi MA, Zhang C, Lu C, Milovanova TN, Yi L, Ryu JD, Jiao H, Dong G, O’Connor JP, Graves DT. FOXO1 deletion reverses the effect of diabetic-induced impaired fracture healing. Diabetes. 2018;67(12):2682–94.

PubMed  PubMed Central  Article  Google Scholar 

Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Therapeutic advances in musculoskeletal disease. 2017;9(3):67–74.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun N, Ning B, Hansson KM, Bruce AC, Seaman SA, Zhang C, Rikard M, DeRosa CA, Fraser CL, Wågberg M, Fritsche-Danielson R, Wikström J, Chien KR, Lundahl A, Hölttä M, Carlsson LG, Peirce SM, Hu S. Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Scientific reports. 2018;8(1):1–11.

Google Scholar 

Ko KI, Syverson AL, Kralik RM, Choi J, DerGarabedian BP, Chen C, Graves DT. Diabetes-induced NF-κB dysregulation in skeletal stem cells prevents resolution of inflammation. Diabetes. 2019;68(11):2095–106.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes. Diabetes. 2018;67(4):607–23.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schall N, Garcia JJ, Kalyanaraman H, China SP, Lee JJ, Sah RL, Pfeifer A, Pilz RB. Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing. JCI Insight. 2020;5(9):e135355.

Xu MT, Sun S, Zhang L, Xu F, Du SL, Zhang XD, Wang DW. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing. Braz J Med Biol Res. 2016;49(1):e4736.

Jiang H, Wang Y, Meng J, Chen S, Wang J, Qiu Y, Zhao J, Guo T. Effects of transplanting bone marrow stromal cells transfected with CXCL13 on fracture healing of diabetic rats. Cellular Physiology and Biochemistry. 2018;49(1):123–33.

CAS  PubMed  Article  Google Scholar 

Hoff P, Gaber T, Strehl C, Schmidt-Bleek K, Lang A, Huscher D, Burmester GR, Schmidmaier G, Perka C, Duda GN, Buttgereit F. Immunological characterization of the early human fracture hematoma. Immunologic research. 2016;64(5):1195–206.

CAS  PubMed  Article  Google Scholar 

Liuni FM, Rugiero C, Feola M, Rao C, Pistillo P, Terracciano C, Giganti MG, Tarantino U. Impaired healing of fragility fractures in type 2 diabetes: clinical and radiographic assessments and serum cytokine levels. Aging Clinical and Experimental Research. 2015;27(1):37–44.

Article  Google Scholar 

Guo Q, Wang W, Abboud R, Guo Z. Impairment of maturation of BMP-6 (35 kDa) correlates with delayed fracture healing in experimental diabetes. Journal of Orthopaedic Surgery and Research. 2020;15(1):1–11.

Article  Google Scholar 

Takahara S, Lee SY, Iwakura T, Oe K, Fukui T, Okumachi E, Arakura M, Sakai Y, Matsumoto T, Matsushita T, Kuroda R, Niikura T. Altered microRNA profile during fracture healing in rats with diabetes. Journal of Orthopaedic Surgery and Research. 2020;15(1):1–9.

Article  Google Scholar 

Wang Z, Tang J, Li Y, Wang Y, Guo Y, Tu Q, Chen J, Wang C. AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes. Experimental cell research. 2020;387(2):111757.

CAS  PubMed  Article  Google Scholar 

Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, Ho WT, Cheng JCY, Cheung WH. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. Journal of orthopaedic translation. 2020;21:111–21.

PubMed  Article  Google Scholar 

Shimizu T, Fujita N, Tsuji-Tamura K, Kitagawa Y, Fujisawa T, Tamura M, Sato M. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Scientific reports. 2021;11(1):1–15.

Article  CAS  Google Scholar 

García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-Salcedo JA, Muñoz-Torres M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. The journal of clinical endocrinology & metabolism. 2012;97(1):234–41.

Article  CAS  Google Scholar 

Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, Tan HL, Zhang L, Han CY, Case R, Duguay AN, Grisanti M, Stevens J, Pretorius JK, Pacheco E, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nature communications. 2016;7(1):1–14.

Article  CAS  Google Scholar 

Alzahrani MM, Rauch F, Hamdy RC. Does sclerostin depletion stimulate fracture healing in a mouse model? Clin Orthop Res. 2016;474(5):1294–302.

Article  Google Scholar 

Kruck B, Zimmermann EA, Damerow S, Figge C, Julien C, Wulsten D, Thiele T, Martin M, Hamdy R, Reumann MK, Duda GN, Checa S, Willie BM. Sclerostin neutralizing antibody treatment enhances bone formation but does not rescue mechanically induced delayed healing. Journal of Bone and Mineral Research. 2018;33(9):1686–97.

CAS  PubMed  Article  Google Scholar 

Morse A, McDonald MM, Schindeler A, Peacock L, Mikulec K, Cheng TL, Liu M, Ke HZ, Little DG. Sclerostin antibody increases callus size and strength but does not improve fracture union in a challenged open rat fracture model. Calcified Tissue International. 2017;101(2):217–28.

CAS  PubMed  Article  Google Scholar 

Bhandari M, Schemitsch EH, Karachalios T, Sancheti P, Poolman RW, Caminis J, Daizadeh N, Dent-Acosta RE, Egbuna O, Chines A, Miclau T. Romosozumab in skeletally mature adults with a fresh unilateral tibial diaphyseal fracture: a randomized phase-2 study. JBJS. 2020;102(16):1416–26.

Article  Google Scholar 

Schemitsch EH, et al. A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J Bone Joint Surg Am. 2020;102(8):693.

PubMed  Article  Google Scholar 

Leder BZ. Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Current osteoporosis reports. 2017;15(2):110–9.

PubMed  PubMed Central  Article  Google Scholar 

Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone.

留言 (0)

沒有登入
gif