CD20+ T cells: an emerging T cell subset in human pathology

Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506. https://doi.org/10.3324/haematol.2019.243543.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li H, Ayer LM, Polyak MJ, Mutch CM, Petrie RJ, Gauthier L, et al. The CD20 calcium channel is localized to microvilli and constitutively associated with membrane rafts: antibody binding increases the affinity of the association through an epitope-dependent cross-linking-independent mechanism. J Biol Chem. 2004;279(19):19893–901. https://doi.org/10.1074/jbc.M400525200.

CAS  Article  PubMed  Google Scholar 

van de Ven AA, Compeer EB, Bloem AC, van de Corput L, van Gijn M, van Montfrans JM, et al. Defective calcium signaling and disrupted CD20-B-cell receptor dissociation in patients with common variable immunodeficiency disorders. J Allergy Clin Immunol. 2012;129(3):755-61.e7. https://doi.org/10.1016/j.jaci.2011.10.020.

CAS  Article  PubMed  Google Scholar 

Hultin LE, Hausner MA, Hultin PM, Giorgi JV. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry. 1993;14(2):196–204. https://doi.org/10.1002/cyto.990140212.

CAS  Article  PubMed  Google Scholar 

Vlaming M, Bilemjian V, Freile JÁ, Lourens HJ, van Rooij N, Huls G, et al. CD20 positive CD8 T cells are a unique and transcriptionally-distinct subset of T cells with distinct transmigration properties. Sci Rep. 2021;11(1):20499. https://doi.org/10.1038/s41598-021-00007-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

de Bruyn M, Wiersma VR, Wouters MCA, Samplonius DF, Klip HG, Helfrich W, et al. CD20+ T cells have a predominantly Tc1 effector memory phenotype and are expanded in the ascites of patients with ovarian cancer. Oncoimmunology. 2015. https://doi.org/10.1080/2162402X.2014.999536.

Article  PubMed  PubMed Central  Google Scholar 

Wilk E, Witte T, Marquardt N, Horvath T, Kalippke K, Scholz K, et al. Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum. 2009;60(12):3563–71. https://doi.org/10.1002/art.24998.

CAS  Article  PubMed  Google Scholar 

Algino KM, Thomason RW, King DE, Montiel MM, Craig FE. CD20 (pan-B cell antigen) expression on bone marrow-derived T cells. Am J Clin Pathol. 1996;106(1):78–81. https://doi.org/10.1093/ajcp/106.1.78.

CAS  Article  PubMed  Google Scholar 

Henry C, Ramadan A, Montcuquet N, Pallandre J-R, Mercier-Letondal P, Deschamps M, et al. CD3+CD20+ cells may be an artifact of flow cytometry: comment on the article by Wilk et al. Arthritis Rheum. 2010;62(8):2561–3. https://doi.org/10.1002/art.27527.

Article  PubMed  Google Scholar 

Schuh E, Berer K, Mulazzani M, Feil K, Meinl I, Lahm H, et al. Features of human CD3+CD20+ T cells. J Immunol. 2016;197(4):1111–7. https://doi.org/10.4049/jimmunol.1600089.

CAS  Article  PubMed  Google Scholar 

Serra-Peinado C, Grau-Expósito J, Luque-Ballesteros L, Astorga-Gamaza A, Navarro J, Gallego-Rodriguez J, et al. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat Commun. 2019;10(1):3705. https://doi.org/10.1038/s41467-019-11556-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Palanichamy A, Jahn S, Nickles D, Derstine M, Abounasr A, Hauser SL, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193(2):580–6. https://doi.org/10.4049/jimmunol.1400118.

CAS  Article  PubMed  Google Scholar 

Salva KA, Bennett D, Longley J, Guitart J, Wood GS. Multispectral imaging approach to the diagnosis of a CD20+ cutaneous T-cell lymphoproliferative disorder: a case report. Am J Dermatopathol. 2015;37(10):e116–21. https://doi.org/10.1097/dad.0000000000000323.

Article  PubMed  PubMed Central  Google Scholar 

Murayama Y, Mukai R, Sata T, Matsunaga S, Noguchi A, Yoshikawa Y. Transient expression of CD20 antigen (pan B cell marker) in activated lymph node T cells. Microbiol Immunol. 1996;40(6):467–71. https://doi.org/10.1111/j.1348-0421.1996.tb01096.x.

CAS  Article  PubMed  Google Scholar 

Ochs J, Nissimov N, Torke S, Freier M, Grondey K, Koch J, et al. Proinflammatory CD20(+) T cells contribute to CNS-directed autoimmunity. Sci Transl Med. 2022. https://doi.org/10.1126/scitranslmed.abi4632.

Article  PubMed  Google Scholar 

Eggleton P, Bremer E, Tarr JM, de Bruyn M, Helfrich W, Kendall A, et al. Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects. Arthritis Res Ther. 2011;13(6):R208. https://doi.org/10.1186/ar3541.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Quendt C, Ochs J, Häusser-Kinzel S, Häusler D, Weber MS. Proinflammatory CD20(+) T cells are differentially affected by multiple sclerosis therapeutics. Ann Neurol. 2021;90(5):834–9. https://doi.org/10.1002/ana.26216.

CAS  Article  PubMed  Google Scholar 

Niu J, Zhai Z, Hao F, Zhang Y, Song Z, Zhong H. Dissection of a circulating CD3(+) CD20(+) T cell subpopulation in patients with psoriasis. Clin Exp Immunol. 2018;192(2):206–12. https://doi.org/10.1111/cei.13106.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hsiao C-C, Fransen NL, van den Bosch AMR, Brandwijk KIM, Huitinga I, Hamann J, et al. White matter lesions in multiple sclerosis are enriched for CD20dim CD8+ tissue-resident memory T cells. Eur J Immunol. 2021;51(2):483–6. https://doi.org/10.1002/eji.202048665.

CAS  Article  PubMed  Google Scholar 

von Essen MR, Ammitzbøll C, Hansen RH, Petersen ERS, McWilliam O, Marquart HV, et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2018;142(1):120–32. https://doi.org/10.1093/brain/awy301.

Article  Google Scholar 

Boldrini VO, Quintiliano RPS, Silva LS, Damasceno A, Santos LMB, Farias AS. Cytotoxic profile of CD3+CD20+ T cells in progressive multiple sclerosis. Multiple sclerosis and related disorders. 2021;52: 103013. https://doi.org/10.1016/j.msard.2021.103013.

CAS  Article  PubMed  Google Scholar 

Holley JE, Bremer E, Kendall AC, de Bruyn M, Helfrich W, Tarr JM, et al. CD20+inflammatory T-cells are present in blood and brain of multiple sclerosis patients and can be selectively targeted for apoptotic elimination. Mult Scler Relat Disord. 2014;3(5):650–8. https://doi.org/10.1016/j.msard.2014.06.001.

Article  PubMed  Google Scholar 

Sabatino JJ Jr, Wilson MR, Calabresi PA, Hauser SL, Schneck JP, Zamvil SS. Anti-CD20 therapy depletes activated myelin-specific CD8(+) T cells in multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(51):25800–7. https://doi.org/10.1073/pnas.1915309116.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20. https://doi.org/10.1056/NEJMoa1606468.

CAS  Article  PubMed  Google Scholar 

Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 2006;180(1–2):63–70. https://doi.org/10.1016/j.jneuroim.2006.06.029.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Capasso N, Nozzolillo A, Scalia G, Lanzillo R, Carotenuto A, De Angelis M, et al. Ocrelizumab depletes T-lymphocytes more than rituximab in multiple sclerosis. Mult Scler Relat Disord. 2021;49: 102802. https://doi.org/10.1016/j.msard.2021.102802.

CAS  Article  PubMed  Google Scholar 

Gingele S, Jacobus TL, Konen FF, Hümmert MW, Sühs KW, Schwenkenbecher P, et al. Ocrelizumab depletes CD20+ T cells in multiple sclerosis patients. Cells. 2018. https://doi.org/10.3390/cells8010012.

Article  PubMed  PubMed Central  Google Scholar 

Howlett-Prieto Q, Feng X, Kramer JF, Kramer KJ, Houston TW, Reder AT. Anti-CD20 therapy corrects a CD8 regulatory T cell deficit in multiple sclerosis. Mult Scler J. 2021;27(14):2170–9. https://doi.org/10.1177/13524585211003301.

CAS  Article  Google Scholar 

Giannini D, Antonucci M, Petrelli F, Bilia S, Alunno A, Puxeddu I. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2020;38(3):387–97.

PubMed  Google Scholar 

Bergantini L, d’Alessandro M, Cameli P, Vietri L, Vagaggini C, Perrone A, et al. Effects of rituximab therapy on B cell differentiation and depletion. Clin Rheumatol. 2020;39(5):1415–21. https://doi.org/10.1007/s10067-020-04996-7.

CAS  Article  PubMed  Google Scholar 

van de Veerdonk FL, Lauwerys B, Marijnissen RJ, Timmermans K, Di Padova F, Koenders MI, et al. The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum. 2011;63(6):1507–16. https://doi.org/10.1002/art.30314.

CAS  Article  PubMed  Google Scholar 

Chen M, Zhang Q, Wei Y, Wan Q, Xu M, Chen X. Anti-CD20 therapy ameliorates β cell function and rebalances Th17/Treg cells in NOD mice. Endocrine. 2022. https://doi.org/10.1007/s12020-021-02965-x.

Article  PubMed  PubMed Central  Google Scholar 

Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol. 2021;184(1):14–24. https://doi.org/10.1111/bjd.19380.

CAS  Article  PubMed  Google Scholar 

Fragiotta S, Mangino G, Iuliano M, Potenza C, Bernardini N, Skroza N, et al. Role of CD 20(+) T cells and related cytokines in mediating retinal microvascular changes and ocular complications in chronic-plaque type psoriasis. Cytokine. 2020;136: 155253. https://doi.org/10.1016/j.cyto.2020.155253.

CAS  Article  PubMed  Google Scholar 

Sato T, Ohno S, Hayashi T, Sato C, Kohu K, Satake M, et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity. 2005;22(3):317–28. https://doi.org/10.1016/j.immuni.2005.01.012.

CAS 

留言 (0)

沒有登入
gif