Task-based functional connectivity of the Useful Field of View (UFOV) fMRI task

Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299–320.

PubMed  Article  Google Scholar 

Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.

CAS  PubMed  Article  Google Scholar 

Anderson M, Nettelbeck T, Barlow J. Reaction time measures of speed of processing: speed of response selection increases with age but speed of stimulus categorization does not. Br J Dev Psychol. 1997;15(2):145–57.

Article  Google Scholar 

Edwards JD, Ruva CL, Brien JLO, Haley CB, Lister JJ. An examination of mediators of the transfer of cognitive speed of processing training to everyday functional performance. Psychol Aging. 2014;28(2):314–21.

Article  Google Scholar 

Wolinsky FD, Mahncke HW, Kosinski M, Unverzagt FW, Smith DM, Jones RN, et al. The ACTIVE cognitive training trial and predicted medical expenditures. BMC Health Serv Res. 2009;9:1–9.

Article  Google Scholar 

Edwards JD, Vance DE, Wadley VG, Cissell GM, Roenker DL, Ball KK. Reliability and validity of useful field of view test scores as administered by personal computer. J Clin Exp Neuropsychol. 2005;27(5):529–43.

PubMed  Article  Google Scholar 

Aust F, Edwards JD. Incremental validity of Useful Field of view subtests for the prediction of instrumental activities of daily living. J Clin Exp Neuropsychol. 2017;38(5):497–515.

Article  Google Scholar 

Bezdicek O, Stepankova H, MartinecNovakova L, Kopecek M. Toward the processing speed theory of activities of daily living in healthy aging: normative data of the Functional Activities Questionnaire. Aging Clin Exp Res. 2016;28(2):239–47.

PubMed  Article  Google Scholar 

Goode KT, Ball KK, Sloane M, Roenker DL, Roth DL, Myers RS, et al. Useful Field of view and other neurocognitive indicators of crash risk in older adults. J Clin Psychol Med Settings. 1998;5(4):425–40.

Article  Google Scholar 

Levitt T, Fugelsang J, Crossley M. Processing speed, attentional capacity, and age-related memory change. Exp Aging Res. 2006;32(3):263–95.

PubMed  Article  Google Scholar 

Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of Cognitive Training Interventions With Older Adults. JAMA. 2002;288(18):2271.

PubMed  PubMed Central  Article  Google Scholar 

Rebok GW, Ball K, Guey LT, Jones RN, Kim HY, King JW, et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62(1):16–24.

PubMed  PubMed Central  Article  Google Scholar 

Roenker DL, Cissell GM, Ball KK, Wadley VG, Edwards JD. Speed-of-processing and driving simulator training result in improved driving performance. Hum Factors. 2003;45(2):218–33.

PubMed  Article  Google Scholar 

Ball K, Edwards JD, Ross LA, McGwin G. Cognitive training decreases motor vehicle collision involvement of older drivers. J Am Geriatr Soc. 2010;58(11):2107–13.

PubMed  PubMed Central  Article  Google Scholar 

Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, et al. A cognitive training program based on principles of brain plasticity: results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. J Am Geriatr Soc. 2009;57(4):594–603.

PubMed  PubMed Central  Article  Google Scholar 

Wolinsky FD, Vander Weg MW, Howren MB, Jones MP, Dotson MM. A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. PLoS One. 2013;8(5):1–11.

Owsley C, McGwin G, Sloane ME, Stalvey BT, Wells J. Timed instrumental activities of daily living tasks: relationship to visual function in older adults. Optom Vis Sci. 2001;78(5):350–9.

CAS  PubMed  Article  Google Scholar 

Valdés EG, Andel R, Lister JJ, Gamaldo A, Edwards JD. Can cognitive speed of processing training improve everyday functioning among older adults with psychometrically defined mild cognitive impairment? J Aging Health [Internet]. 2017;089826431773882. Available from: http://journals.sagepub.com/doi/10.1177/0898264317738828

Ross LA, Webb CE, Whitaker C, Hicks JM, Schmidt EL, Samimy S, et al. The effects of useful field of view training on brain activity and connectivity. Journals Gerontol Ser B. 2018;00(00):1–11.

Google Scholar 

Kraft JN, Albizu A, O’Shea A, Hausman HK, Evangelista ND, Boutzoukas E, et al. Functional neural correlates of a Useful Field of View (UFOV)-based fMRI task in older adults. Cereb Cortex. 2022;32(9):1993–2012.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity Echo-Planar MRI. Magn Reson Med [Internet]. 1995;34(4):537–41. Available from: http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910340409/abstract

De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006;29(4):1359–67.

PubMed  Article  Google Scholar 

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.

CAS  PubMed  Article  Google Scholar 

van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol [Internet]. 2010;20:519–34. Available from: https://doi.org/10.1016/j.euroneuro.2010.03.008

Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci U S A. 2014;111(46):E4997-5006.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chan MY, Alhazmi FH, Park DC, Savalia NK, Wig GS. Resting-state network topology differentiates task signals across the adult life span. J Neurosci. 2017;37(10):2734–45.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wig GS. Segregated systems of human brain networks. Trends Cogn Sci [Internet]. 2017;21(12):981–96. Available from: https://doi.org/10.1016/j.tics.2017.09.006

Hausman HK, O’Shea A, Kraft JN, Boutzoukas EM, Evangelista ND, Van Etten EJ, et al. The role of resting-state network functional connectivity in cognitive aging. Front Aging Neurosci. 2020;12(June):1–10.

Google Scholar 

Hausman HK, Hardcastle C, Albizu A, Kraft JN, Evangelista ND, Boutzoukas EM, et al. Cingulo-opercular and frontoparietal control network connectivity and executive functioning in older adults. GeroScience [Internet]. 2021;(0123456789). Available from: https://doi.org/10.1007/s11357-021-00503-1

Hardcastle C, Hausman HK, Kraft JN, Albizu A, Evangelista ND, Boutzoukas EM, et al. Higher-order resting state network association with the useful field of view task in older adults. GeroScience [Internet]. 2022;44(1):131–45. Available from: https://doi.org/10.1007/s11357-021-00441-y

Hardcastle C, Hausman HK, Kraft JN, Albizu A, O’Shea A, Boutzoukas EM, et al. Proximal improvement and higher-order resting state network change after multidomain cognitive training intervention in healthy older adults. GeroScience [Internet]. 2022;44(1):1011–1027. Available from: https://doi.org/10.1007/s11357-022-00535-1

Woods AJ, Cohen R, Marsiske M, Alexander GE, Czaja SJ, Wu S. Augmenting cognitive training in older adults (The ACT Study): design and methods of a phase III tDCS and cognitive training trial. Contemp Clin Trials. 2018;65:19–32.

PubMed  Article  Google Scholar 

Weintraub S, Salmon D, Mercaldo N, Ferris S, Graff-radford NR, Chui H, et al. The Alzheimer’s disease centers’ data set (UDS): the neuropsychological test battery. Alzheimer Dis Assoc Disord. 2009;23(2):91–101.

PubMed  PubMed Central  Article  Google Scholar 

Aust F, Edwards JD. Incremental validity of useful field of view subtests for the prediction of instrumental activities of daily living. J Clin Exp Neuropsychol. 2016;38(5):497–515.

PubMed  PubMed Central  Article  Google Scholar 

Edwards JD, Hauser RA, O’Connor ML, Valdés EG, Zesiewicz TA, Uc EY. Randomized trial of cognitive speed of processing training in Parkinson disease. Neurology. 2013;81(15):1284–90.

PubMed  PubMed Central  Article  Google Scholar 

Lin F, Heffner KL, Ren P, Tivarus ME, Brasch J, Chen DG, et al. Cognitive and neural effects of vision-based speed-of-processing training in older adults with amnestic mild cognitive impairment: a pilot study. J Am Geriatr Soc. 2016;64(6):1293–8.

PubMed  PubMed Central  Article  Google Scholar 

Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41.

PubMed  Article  Google Scholar 

Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage [Internet]. 2007;37(1):90–101. Available from: https://doi.org/10.1016/j.neuroimage.2007.04.042

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage [Internet]. 2012;59(3):2142–54. Available from: https://doi.org/10.1016/j.neuroimage.2011.10.018

Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35(3):346–55.

CAS  PubMed  Article  Google Scholar 

Yeo BTT, Tandi J, Chee MWL. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. Neuroimage [Internet]. 2015;111:147–58. Available from: https://doi.org/10.1016/j.neuroimage.2015.02.018

Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–9.

PubMed  Article  Google Scholar 

Nieto-Castanon A. Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN [Internet]. 2020. p. 108. Available from: https://www.researchgate.net/publication/339460691_Handbook_of_functional_connectivity_Magnetic_Resonance_Imaging_methods_in_CONN. Accessed 14 Jan 2022.

Benjamini Y, Hochberg Y. Controlling the false discovery rate : a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300.

Google Scholar 

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–65.

PubMed  Article  Google Scholar 

Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin Neurosci [Internet]. 2018;20:133–40. Available from: https://doi.org/10.31887/DCNS.2018.20.2/smarek

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cabeza R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol Aging. 2002;17(1):85–100.

PubMed  Article  Google Scholar 

Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage. 2002;17(3):1394–402.

PubMed  Article  Google Scholar 

Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fox M, Corbetta M, Snyder A, Vincent J, Raichle M. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A [Internet]. 2006;103(26):10046–51. Available from: https://doi.org/10.1073/pnas.0604187103

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif