Production of polyglutamic acid-like mucilage protein by Peribacillus simplex strain 8h

Ajayeoba TA, Dula S, Ijabadeniyi OA (2019) Properties of poly-γ-glutamic acid producing-Bacillus species isolated from ogi liquor and lemon-ogi liquor. Front Microbiol 10:771

Article  Google Scholar 

Allioui N, Driss F, Dhouib H, Jlail L, Tounsi S, Frikha-Gargouri O (2021) Two novel Bacillus strains (subtilis and simplex species) with promising potential for the biocontrol of Zymoseptoria tritici, the causal agent of septoria tritici blotch of wheat. BioMed Res Int:6611657

Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

CAS  Article  Google Scholar 

Ashiuchi M, Nakamura H, Yamamoto T, Kamei T, Soda K, Park C, Sung MH, Yagi T, Misono H (2003) Poly-γ-glutamate depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity. J Mol Cat B-Enzym 23:249–255

CAS  Article  Google Scholar 

Ashiuchi M (2013) Microbial production and chemical transformation of poly-γ-glutamate. Microbial Biotechnol 6:664–674

CAS  Article  Google Scholar 

Bajaj I, Singhal R (2011) Poly (glutamic acid) – an emerging biopolymer of commercial interest. Bioresource Technol 102:5551–5561

CAS  Article  Google Scholar 

Bell DJ, Dedonder R (1954) A structural re-examination of the levans formed by Pseudomonas prunicola, Wormald, and Bacillus subtilis, BG2 F1. J Chem Soc 3:2866–2870

Article  Google Scholar 

Berekaa MM, Abdel-Fattah YR, El-Sayed SM, El-Borai AM, El-Aassar SA (2006) Optimization of culture conditions for production of polyamide biopolymer (polyglutamate) by Bacillus sp. strain-R. J Biol Sci 6:687–694

CAS  Article  Google Scholar 

Bovarnick M (1942) The formation of extracellular D-glutamic acid polypeptide by Bacillus subtilis. J Biol Chem 145:415–424

Article  Google Scholar 

Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Nat Acad Sci USA 98:11621–11626

CAS  Article  Google Scholar 

Candela T, Moya M, Haustant M, Fouet A (2009) Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol 55:627–632

CAS  Article  Google Scholar 

Chamekh A, Kharbech O, Driss-Limam R, Fersi C, Khouatmeya M, Chouari R (2021) Evidences for antioxidant response and biosorption potential of Bacillus simplex strain 115 against lead. World J Microbiol Biotechnol 37:44

CAS  Article  Google Scholar 

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1951) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

Article  Google Scholar 

Halmschlag B, Putri SP, Fukusaki E, Blank LM (2020) Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: a metabolomic analysis. J Biosci Bioeng 130:272–282

CAS  Article  Google Scholar 

Ivanovics G, Bruckner V (1937) The chemical nature of the immuno-specific capsule substance of anthrax bacillus. Naturwissenschaften 25:250

CAS  Article  Google Scholar 

Jiang L, Jung WY, Park SH, Kang SW, Lee MK, Lee JS, Lee JH, Lee J (2021) Draft genome sequence of Peribacillus sp. AGMB 02131 isolated from feces of a Korean cow. Korean J Microbiol 57:66–68

Google Scholar 

Kim E, Yang J, Sung MH, Poo H (2019) Oral administration of poly-gamma-glutamic acid significantly enhances the antitumor effect of HPV16 E7-expressing Lactobacillus casei in a TC-1 mouse model. J Microbiol Biotechnol 29:1444–1452

CAS  Article  Google Scholar 

Kumar R, Vikramachakravarthi D, Pal P (2014) Production and purification of glutamic acid: a critical review towards process intensification. Chem Eng Process 81:59–71

CAS  Article  Google Scholar 

Kwak C, Nguyen QT, Kim J, Kim TH, Poo H (2021) Influenza chimeric protein (3M2e-3HA2-NP) adjuvanted with PGA/Alum confers cross-protection against heterologous influenza a viruses. J Microbiol Biotechnol 31:304–316

CAS  Article  Google Scholar 

Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Hoboken, pp 115–175

Google Scholar 

Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S (2016) Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9:537

Google Scholar 

Meerak J, Iida H, Watanabe Y, Miyashita M, Sato H, Nakagawa Y, Tahara Y (2007) Phylogeny of γ-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. J Gen Appl Microbiol 53:315–323

CAS  Article  Google Scholar 

Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S (2006) Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. Microbiol 152:2801–2807

CAS  Article  Google Scholar 

Nguyen QT, Kwak C, Lee WS, Kim J, Jeong J, Sung MH, Yang J, Poo H (2019) Poly-γ-glutamic acid complexed with alum induces cross-protective immunity of pandemic H1N1 vaccine. Front Immunol 10:1604

CAS  Article  Google Scholar 

Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiol 161:1–17

CAS  Article  Google Scholar 

Oguntoyinbo FA, Sanni AI, Franz CMAP, Holzapfel WH (2007) Phenotypic diversity and technological properties of Bacillus subtilis species isolated from okpehe, a traditional fermented condiment. World J Microbiol Biotechnol 23:401–410

CAS  Article  Google Scholar 

Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438

CAS  Article  Google Scholar 

Rabodonirina S, Rasolomampianina R, Krier F, Drider D, Merhaby D, Net S, Ouddane B (2019) Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. J Environ Manag 232:1–7

CAS  Article  Google Scholar 

Schwarz AR, Ortiz I, Maymon M, Herbold CW, Fujishige NA, Vijanderan JA, Villella W, Hanamoto K, Diener A, Sanders ER, DeMason DA, Hirsch AM (2013) Bacillus simplex—a little known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. viciae. Agronomy 3:595–620

Article  Google Scholar 

Sela M, Katchalski E, Gehatia M (1956) Multichain polyamino acids. J Am Chem Soc 78:746–751

CAS  Article  Google Scholar 

Shih L, Chen LD, Wu JY (2010) Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohydr Polym 82:111–117

CAS  Article  Google Scholar 

Shima F, Akagi T, Akashi M (2015) Effect of hydrophobic side chains in the induction of immune responses by nanoparticle adjuvants consisting of amphiphilic poly(γ-glutamic acid). Bioconj Chem 26:890–898

CAS  Article  Google Scholar 

Sirisansaneeyakul S, Cao M, Kongklom N, Chaniga C, Shi Z, Chisti Y (2017) Microbial production of poly-γ-glutamic acid. World J Microbiol Biotechnol 33:173–180

Article  Google Scholar 

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–78

CAS  Article  Google Scholar 

Song J, Kim S, An JH, Sang MK, Weon HY (2020) Complete genome sequence of Peribacillus butanolivorans KJ40, a soil bacterium alleviating drought stress in plants. Korean J Microbiol 56:407–409

Google Scholar 

Tamura T, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

CAS  Article  Google Scholar 

Taniguchi M, Kato K, Shimauchi A, Ping X, Fujita KI, Tanaka T, Tarui Y, Hirasawa E (2005) Physicochemical properties of cross-linked poly-γ-glutamic acid and its flocculating activity against kaolin suspension. J Biosci Bioeng 99:130–135

CAS  Article  Google Scholar 

Tanimoto H, Mori M, Motoki M, Torii K, Kadowaki M, Noguchi T (2001) Natto mucilage containing poly-γ-glutamic acid increases soluble calcium in the rat small intestine. Biosci Biotechnol Biochem 65:516–521

CAS  Article  Google Scholar 

Yamazaki M, Miyazaki H, Sato S (1988) Separation behavior of sugars by TLC and its application to food analysis (in Japanese). Bunseki Kagaku 37:121–127

Article  Google Scholar 

Yuan Y, Yan F, Chen Y, Jin C, Guo JH, Chai Y (2016) Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front Microbiol 7:1811

Google Scholar 

Zeng W, Lin Y, Qi Z, He Y, Wang D, Chen G, Liang Z (2013) An integrated high-throughput strategy for rapid screening of poly(γ-glutamic acid)-producing bacteria. Appl Microbiol Biotechnol 97:2163–2172

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif