The adipocyte microenvironment and cancer

Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., et al. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651

CAS  Article  PubMed  Google Scholar 

Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lengyel, E., Makowski, L., DiGiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Duman, C., Yaqubi, K., Hoffmann, A., Acikgoz, A. A., Korshunov, A., Bendszus, M., et al. (2019). Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metabolism, 30(2), 274–289 e275. https://doi.org/10.1016/j.cmet.2019.04.004.

Reilly, S. M., Hung, C. W., Ahmadian, M., Zhao, P., Keinan, O., Gomez, A. V., et al. (2020). Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nature Metabolism, 2(7), 620–634. https://doi.org/10.1038/s42255-020-0217-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Thomas, E. L., Saeed, N., Hajnal, J. V., Brynes, A., Goldstone, A. P., Frost, G., et al. (1998). Magnetic resonance imaging of total body fat. J Appl Physiol (1985), 85(5), 1778–1785. https://doi.org/10.1152/jappl.1998.85.5.1778.

Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshiro, T., Nio-Kobayashi, J., et al. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes, 58(7), 1526–1531. https://doi.org/10.2337/db09-0530

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kahn, C. R., Wang, G., & Lee, K. Y. (2019). Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. Journal of Clinical Investigation, 129(10), 3990–4000. https://doi.org/10.1172/JCI129187

Article  PubMed  PubMed Central  Google Scholar 

Vijay, J., Gauthier, M. F., Biswell, R. L., Louiselle, D. A., Johnston, J. J., Cheung, W. A., et al. (2020). Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nature Metabolism, 2(1), 97–109. https://doi.org/10.1038/s42255-019-0152-6

Article  PubMed  Google Scholar 

Crewe, C., An, Y. A., & Scherer, P. E. (2017). The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. Journal of Clinical Investigation, 127(1), 74–82. https://doi.org/10.1172/JCI88883

Article  PubMed  PubMed Central  Google Scholar 

Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., Straif, K., et al. (2016). Body fatness and cancer–Viewpoint of the IARC working group. New England Journal of Medicine, 375(8), 794–798. https://doi.org/10.1056/NEJMsr1606602

Article  PubMed  Google Scholar 

Ringel, A. E., Drijvers, J. M., Baker, G. J., Catozzi, A., Garcia-Canaveras, J. C., Gassaway, B. M., et al. (2020). Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell, 183(7), 1848–1866 e1826. https://doi.org/10.1016/j.cell.2020.11.009.

Maury, E., Ehala-Aleksejev, K., Guiot, Y., Detry, R., Vandenhooft, A., & Brichard, S. M. (2007). Adipokines oversecreted by omental adipose tissue in human obesity. American Journal of Physiology - Endocrinology and Metabolism, 293, E656–E665.

CAS  Article  Google Scholar 

Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., et al. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. https://doi.org/10.1158/0008-5472.CAN-10-3323

CAS  Article  PubMed  Google Scholar 

Arner, P., & Kulyte, A. (2015). MicroRNA regulatory networks in human adipose tissue and obesity. Nature Reviews: Endocrinology, 11(5), 276–288. https://doi.org/10.1038/nrendo.2015.25

CAS  Article  PubMed  Google Scholar 

Maguire, O. A., Ackerman, S. E., Szwed, S. K., Maganti, A. V., Marchildon, F., Huang, X., et al. (2021). Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer. Cell Metabolism, 33(3), 499–512 e496. https://doi.org/10.1016/j.cmet.2021.01.018.

Romero, I. L., McCormick, A., McEwen, K. A., Park, S., Karrison, T., Yamada, S. D., et al. (2012). Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstetrics and Gynecology, 119(1), 61–67. https://doi.org/10.1097/AOG.0b013e3182393ab3

Article  PubMed  Google Scholar 

Sun, C., Li, X., Guo, E., Li, N., Zhou, B., Lu, H., et al. (2020). MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene, 39(8), 1681–1695. https://doi.org/10.1038/s41388-019-1090-1

CAS  Article  PubMed  Google Scholar 

Goodwin, P. J., Chen, B. E., Gelmon, K. A., Whelan, T. J., Ennis, M., Lemieux, J., et al. (2022). Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: The MA.32 randomized clinical trial. JAMA, 327(20), 1963–1973. https://doi.org/10.1001/jama.2022.6147.

Kazantzis, M., & Stahl, A. (2012). Fatty acid transport proteins, implications in physiology and disease. Biochimica et Biophysica Acta, 1821(5), 852–857. https://doi.org/10.1016/j.bbalip.2011.09.010

CAS  Article  PubMed  Google Scholar 

Nath, A., Li, I., Roberts, L. R., & Chan, C. (2015). Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Scientific Reports, 5, 14752. https://doi.org/10.1038/srep14752

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nath, A., & Chan, C. (2016). Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Scientific Reports, 6, 18669. https://doi.org/10.1038/srep18669

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hao, Y., Li, D., Xu, Y., Ouyang, J., Wang, Y., Zhang, Y., et al. (2019). Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics, 20(Suppl 7), 195. https://doi.org/10.1186/s12859-019-2734-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ladanyi, A., Mukherjee, A., Kenny, H. A., Johnson, A., Mitra, A. K., Sundaresan, S., et al. (2018). Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 37(17), 2285–2301. https://doi.org/10.1038/s41388-017-0093-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C. S., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541(7635), 41–45. https://doi.org/10.1038/nature20791

CAS  Article  PubMed  Google Scholar 

Pascual, G., Dominguez, D., Elosua-Bayes, M., Beckedorff, F., Laudanna, C., Bigas, C., et al. (2021). Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature, 599(7885), 485–490. https://doi.org/10.1038/s41586-021-04075-0

CAS  Article  PubMed  Google Scholar 

Choi, C. H., Choi, J. J., Park, Y. A., Lee, Y. Y., Song, S. Y., Sung, C. O., et al. (2012). Identification of differentially expressed genes according to chemosensitivity in advanced ovarian serous adenocarcinomas: Expression of GRIA2 predicts better survival. British Journal of Cancer, 107(1), 91–99. https://doi.org/10.1038/bjc.2012.217

CAS  Article  PubMed  PubMed Central  Google Scholar 

Watt, M. J., Clark, A. K., Selth, L. A., Haynes, V. R., Lister, N., Rebello, R., et al. (2019). Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 11(478). https://doi.org/10.1126/scitranslmed.aau5758.

Zhang, M., Di Martino, J. S., Bowman, R. L., Campbell, N. R., Baksh, S. C., Simon-Vermot, T., et al. (2018). Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discovery, 8(8), 1006–1025. https://doi.org/10.1158/2159-8290.CD-17-1371

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S. W., & Cravatt, B. F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140, 49–61.

CAS  Article  Google Scholar 

Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492

CAS  Article  PubMed  PubMed Central  Google Scholar 

Eckert, M. A., Coscia, F., Chryplewicz, A., Chang, J. W., Hernandez, K. M., Pan, S., et al. (2019). Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature, 569(7758), 723–728. https://doi.org/10.1038/s41586-019-1173-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mukherjee, A., Chiang, C. Y., Daifotis, H. A., Nieman, K. M., Fahrmann, J. F., Lastra, R. R., et al. (2020). Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Research, 80(8), 1748–1761. https://doi.org/10.1158/0008-5472.CAN-19-1999

CAS  Article  PubMed  Google Scholar 

Xu, A., Wang, Y., Xu, J. Y., Stejskal, D., Tam, S., Zhang, J., et al. (2006). Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clinical Chemistry, 52(3), 405–413. https://doi.org/10.1373/clinchem.2005.062463

CAS  Article  PubMed  Google Scholar 

Cao, H., Sekiya, M., Ertunc, M. E., Burak, M. F., Mayers, J. R., White, A., et al. (2013). Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metabolism, 17(5), 768–778. https://doi.org/10.1016/j.cmet.2013.04.012

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hao, J., Zhang, Y., Yan, X., Yan, F., Sun, Y., Zeng, J., et al. (2018). Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development. Cell Metabolism, 28(5), 689–705 e685. https://doi.org/10.1016/j.cmet.2018.07.006.

Laurent, V., Guerard, A., Mazerolles, C., Le Gonidec, S., Toulet, A., Nieto, L., et al. (2016). Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nature Communications, 7, 10230. https://doi.org/10.1038/ncomms10230

CAS  Article  PubMed  PubMed Central  Google Scholar 

Louie, S. M., Roberts, L. S., Mulvihill, M. M., Luo, K., & Nomura, D. K. (2013). Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochimica et Biophysica Acta, 1831(10), 1566–1572. https://doi.org/10.1016/j.bbalip.2013.07.008

CAS  Article  PubMed 

留言 (0)

沒有登入
gif