p73 isoforms meet evolution of metastasis

Yang, A., & McKeon, F. (2000). P63 and P73: P53 mimics, menaces and more. Nature Reviews Molecular Cell Biology, 1(3), 199–207. https://doi.org/10.1038/35043127

CAS  Article  PubMed  Google Scholar 

Graziano, V., & De Laurenzi, V. (2011). Role of p63 in cancer development. Biochimica et Biophysica Acta, 1816(1), 57–66. https://doi.org/10.1016/j.bbcan.2011.04.002

CAS  Article  PubMed  Google Scholar 

Su, X., Chakravarti, D., & Flores, E. R. (2013). p63 steps into the limelight: Crucial roles in the suppression of tumorigenesis and metastasis. Nature Reviews Cancer, 13(2), 136–143. https://doi.org/10.1038/nrc3446

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stiewe, T. (2007). The p53 family in differentiation and tumorigenesis. Nature Reviews Cancer, 7(3), 165–168. https://doi.org/10.1038/nrc2072

CAS  Article  PubMed  Google Scholar 

Li, Y., & Prives, C. (2007). Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene, 26(15), 2220–2225. https://doi.org/10.1038/sj.onc.1210311

CAS  Article  PubMed  Google Scholar 

Ramos, H., Raimundo, L., & Saraiva, L. (2020). p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacological Research, 162, 105245. https://doi.org/10.1016/j.phrs.2020.105245

CAS  Article  PubMed  Google Scholar 

Stiewe, T., Theseling, C. C., & Pützer, B. M. (2002). Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: Implications for tumorigenesis. Journal of Biological Chemistry, 277(16), 14177–14185. https://doi.org/10.1074/jbc.M200480200

CAS  Article  PubMed  Google Scholar 

Kartasheva, N. N., Contente, A., Lenz-Stöppler, C., Roth, J., & Dobbelstein, M. (2002). p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene, 21(31), 4715–4727. https://doi.org/10.1038/sj.onc.1205584

CAS  Article  PubMed  Google Scholar 

Zaika, A. I., Slade, N., Erster, S. H., Sansome, C., Joseph, T. W., Pearl, M., et al. (2002). DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. Journal of Experimental Medicine, 196(6), 765–780. https://doi.org/10.1084/jem.20020179

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grob, T. J., Novak, U., Maisse, C., Barcaroli, D., Lüthi, A. U., Pirnia, F., et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death and Differentiation, 8(12), 1213–1223. https://doi.org/10.1038/sj.cdd.4400962

CAS  Article  PubMed  Google Scholar 

Marabese, M., Vikhanskaya, F., & Broggini, M. (2007). p73: A chiaroscuro gene in cancer. European Journal of Cancer, 43(9), 1361–1372. https://doi.org/10.1016/j.ejca.2007.01.042

CAS  Article  PubMed  Google Scholar 

Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes and Development, 22(19), 2677–2691. https://doi.org/10.1101/gad.1695308

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wilhelm, M. T., Rufini, A., Wetzel, M. K., Tsuchihara, K., Inoue, S., Tomasini, R., et al. (2010). Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes and Development, 24(6), 549–560. https://doi.org/10.1101/gad.1873910

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stiewe, T., Zimmermann, S., Frilling, A., Esche, H., & Pützer, B. M. (2002). Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Research, 62(13), 3598–3602.

CAS  PubMed  Google Scholar 

Steder, M., Alla, V., Meier, C., Spitschak, A., Pahnke, J., Fürst, K., et al. (2013). DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell, 24(4), 512–527. https://doi.org/10.1016/j.ccr.2013.08.023

CAS  Article  PubMed  Google Scholar 

Lunghi, P., Costanzo, A., Mazzera, L., Rizzoli, V., Levrero, M., & Bonati, A. (2009). The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting. Clinical Cancer Research, 15(21), 6495–6502. https://doi.org/10.1158/1078-0432.CCR-09-1229

CAS  Article  PubMed  Google Scholar 

Amelio, I., Inoue, S., Markert, E. K., Levine, A. J., Knight, R. A., Mak, T. W., et al. (2015). TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci U S A, 112(1), 226–231. https://doi.org/10.1073/pnas.1410609111

CAS  Article  PubMed  Google Scholar 

Stantic, M., Sakil, H. A., Zirath, H., Fang, T., Sanz, G., Fernandez-Woodbridge, A., et al. (2015). TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity. Proc Natl Acad Sci U S A, 112(1), 220–225. https://doi.org/10.1073/pnas.1421697112

CAS  Article  PubMed  Google Scholar 

Dulloo, I., Phang, B. H., Othman, R., Tan, S. Y., Vijayaraghavan, A., Goh, L. K., et al. (2015). Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nature Cell Biology, 17(4), 511–523. https://doi.org/10.1038/ncb3130

CAS  Article  PubMed  Google Scholar 

López-Ferreras, L., Martínez-García, N., Maeso-Alonso, L., Martín-López, M., Díez-Matilla, Á., Villoch-Fernandez, J., et al. (2021). Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific. Cancers (Basel), 13, 13. https://doi.org/10.3390/cancers13133182

CAS  Article  Google Scholar 

Gui, P., & Bivona, T. G. (2022). Evolution of metastasis: New tools and insights. Trends Cancer, 8(2), 98–109. https://doi.org/10.1016/j.trecan.2021.11.002

CAS  Article  PubMed  Google Scholar 

Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6(12), 924–935. https://doi.org/10.1038/nrc2013

CAS  Article  PubMed  Google Scholar 

McGranahan, N., & Swanton, C. (2017). Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell, 168(4), 613–628. https://doi.org/10.1016/j.cell.2017.01.018

CAS  Article  PubMed  Google Scholar 

Birkbak, N. J., & McGranahan, N. (2020). Cancer genome evolutionary trajectories in metastasis. Cancer Cell, 37(1), 8–19. https://doi.org/10.1016/j.ccell.2019.12.004

CAS  Article  PubMed  Google Scholar 

Turajlic, S., & Swanton, C. (2016). Metastasis as an evolutionary process. Science, 352(6282), 169–175. https://doi.org/10.1126/science.aaf2784

CAS  Article  PubMed  Google Scholar 

Amirouchene-Angelozzi, N., Swanton, C., & Bardelli, A. (2017). Tumor evolution as a therapeutic target. Cancer Discov, https://doi.org/10.1158/2159-8290.Cd-17-0343

Rodrigues, P., Patel, S. A., Harewood, L., Olan, I., Vojtasova, E., Syafruddin, S. E., et al. (2018). NF-κB-dependent lymphoid enhancer co-option promotes renal carcinoma metastasis. Cancer Discovery, 8(7), 850–865. https://doi.org/10.1158/2159-8290.Cd-17-1211

CAS  Article  PubMed  PubMed Central  Google Scholar 

Logotheti, S., Marquardt, S., Richter, C., Sophie Hain, R., Murr, N., Takan, I., et al. (2020). Neural networks recapitulation by cancer cells promotes disease progression: a novel role of p73 isoforms in cancer-neuronal crosstalk. Cancers, 12, 12. https://doi.org/10.3390/cancers12123789

CAS  Article  Google Scholar 

Patel, S. A., Rodrigues, P., Wesolowski, L., & Vanharanta, S. (2021). Genomic control of metastasis. British Journal of Cancer, 124(1), 3–12. https://doi.org/10.1038/s41416-020-01127-6

CAS  Article  PubMed  Google Scholar 

Kerosuo, L., & Bronner-Fraser, M. (2012). What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Seminars in Cell & Developmental Biology, 23(3), 320–332. https://doi.org/10.1016/j.semcdb.2012.03.010

CAS  Article  Google Scholar 

Rousseaux, S., Debernardi, A., Jacquiau, B., Vitte, A. L., Vesin, A., Nagy-Mignotte, H., et al. (2013). Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med, 5(186), 186ra166. https://doi.org/10.1126/scitranslmed.3005723

CAS  Article  Google Scholar 

Richter, C., Marquardt, S., Li, F., Spitschak, A., Murr, N., Edelhäuser, B. A. H., et al. (2019). Rewiring E2F1 with classical NHEJ via APLF suppression promotes bladder cancer invasiveness. Journal of Experimental & Clinical Cancer Research, 38(1), 292. https://doi.org/10.1186/s13046-019-1286-9

CAS  Article  Google Scholar 

Costanzo, V., Bardelli, A., Siena, S., & Abrignani, S. (2018). Exploring the links between cancer and placenta development. Open Biol, 8, 6. https://doi.org/10.1098/rsob.180081

CAS  Article  Google Scholar 

Marquardt, S., Pavlopoulou, A., Takan, I., Dhar, P., Pützer, B. M., & Logotheti, S. (2021). A systems-based key innovation-driven approach infers co-option of jaw developmental programs during cancer progression. Front Cell Dev Biol, 9, 682619. https://doi.org/10.3389/fcell.2021.682619

Article  PubMed  PubMed Central  Google Scholar 

Yılmaz, H., Toy, H. I., Marquardt, S., Karakülah, G., Küçük, C., Kontou, P. I., et al. (2021). In silico methods for the identification of diagnostic and favorable prognostic markers in acute myeloid leukemia. International Journal of Molecular Sciences, 22, 17. https://doi.org/10.3390/ijms22179601

CAS  Article  Google Scholar 

Kerbel, R. S. (2000). Tumor angiogenesis: Past, present and the near future. Carcinogenesis, 21(3), 505–515. https://doi.org/10.1093/carcin/21.3.505

CAS  Article  PubMed  Google Scholar 

Cervantes-Villagrana, R. D., Albores-García, D., Cervantes-Villagrana, A. R., & García-Acevez, S. J. (2020). Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduction and Targeted Therapy, 5

留言 (0)

沒有登入
gif