Tissue oxygenation stabilizes neovessels and mitigates hemorrhages in human atherosclerosis-induced angiogenesis

Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061. https://doi.org/10.1161/01.ATV.0000178991.71605.18

CAS  Article  PubMed  Google Scholar 

Guo L, Harari E, Virmani R, Finn AV (2017) Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases. Arterioscler Thromb Vasc Biol 37:e33–e39. https://doi.org/10.1161/ATVBAHA.117.309045

CAS  Article  PubMed  Google Scholar 

Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, Duimel H, Frederik PM, van Hinsbergh VW, Virmani R, Daemen MJ (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll 53:1517–1527. https://doi.org/10.1016/j.jacc.2008.12.056

CAS  Article  Google Scholar 

Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V (2006) Neovascularization in human atherosclerosis. Curr Mol Med 6:457–477. https://doi.org/10.2174/156652406778018635

CAS  Article  PubMed  Google Scholar 

Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J (2018) Vasa Vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol 9:706. https://doi.org/10.3389/fimmu.2018.00706

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, Cleutjens JP, van den Akker LH, Corvol P, Wouters BG, Daemen MJ, Bijnens AP (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 51:1258–1265. https://doi.org/10.1016/j.jacc.2007.12.025

CAS  Article  PubMed  Google Scholar 

Björnheden T, Levin M, Evaldsson M, Wiklund O (1999) Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 19:870–876. https://doi.org/10.1161/01.atv.19.4.870

Article  PubMed  Google Scholar 

Nie X, Randolph GJ, Elvington A, Bandara N, Zheleznyak A, Gropler RJ, Woodard PK, Lapi SE (2016) Imaging of hypoxia in mouse atherosclerotic plaques with (64)Cu-ATSM. Nucl Med Biol 43:534–542. https://doi.org/10.1016/j.nucmedbio.2016.05.011

CAS  Article  PubMed  PubMed Central  Google Scholar 

Marsch E, Sluimer JC, Daemen MJ (2013) Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol 24:393–400. https://doi.org/10.1097/MOL.0b013e32836484a4

CAS  Article  PubMed  Google Scholar 

Ferns GAA, Heikal L (2017) Hypoxia in atherogenesis. Angiology 68:472–493. https://doi.org/10.1177/0003319716662423

CAS  Article  PubMed  Google Scholar 

Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56. https://doi.org/10.1146/annurev-physiol-021113-170322

CAS  Article  PubMed  Google Scholar 

Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845. https://doi.org/10.1038/359843a0

CAS  Article  PubMed  Google Scholar 

Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE, Nakao K (1998) Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–16. https://doi.org/10.1161/01.cir.98.20.2108

CAS  Article  PubMed  Google Scholar 

Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309. https://doi.org/10.1126/science.2479986

CAS  Article  PubMed  Google Scholar 

Aplin AC, Nicosia RF (2016) Hypoxia paradoxically inhibits the angiogenic response of isolated vessel explants while inducing overexpression of vascular endothelial growth factor. Angiogenesis 19:133–146. https://doi.org/10.1007/s10456-015-9493-2

CAS  Article  PubMed  Google Scholar 

He M, Ma S, Cai Q, Wu Y, Shao C, Kong H, Wang H, Zeng X, Xie W (2018) Hypoxia induces the dysfunction of human endothelial colony-forming cells via HIF-1α signaling. Respir Physiol Neurobiol 247:87–95. https://doi.org/10.1016/j.resp.2017.09.013

CAS  Article  PubMed  Google Scholar 

Tasev D, Dekker-Vroling L, van Wijhe M, Broxterman HJ, Koolwijk P, van Hinsbergh VWM (2018) Hypoxia impairs initial outgrowth of endothelial colony forming cells and reduces their proliferative and sprouting potential. Front Med (Lausanne) 5:356. https://doi.org/10.3389/fmed.2018.00356

Article  Google Scholar 

Nauta TD, Duyndam MC, Weijers EM, van Hinsbergh VM, Koolwijk P (2016) HIF-2α expression regulates sprout formation into 3D fibrin matrices in prolonged hypoxia in human microvascular endothelial cells. PLoS One 11:e0160700

Article  Google Scholar 

Aplin AC, Nicosia RF (2019) The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis. Angiogenesis 22:421–431. https://doi.org/10.1007/s10456-019-09667-z

CAS  Article  PubMed  Google Scholar 

Aplin AC, Nicosia RF (2015) The rat aortic ring model of angiogenesis. Methods Mol Biol 1214:255–264. https://doi.org/10.1007/978-1-4939-1462-3_16

CAS  Article  PubMed  Google Scholar 

Fogel E, Aplin AC, Nicosia RF (2007) Aortic rings stimulate inflammatory angiogenesis in a subcutaneous implant in vivo model. Angiogenesis 10:287–295. https://doi.org/10.1007/s10456-007-9082-0

Article  PubMed  Google Scholar 

Gelati M, Aplin AC, Fogel E, Smith KD, Nicosia RF (2008) The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages. J Immunol 181:5711–5719. https://doi.org/10.4049/jimmunol.181.8.5711

CAS  Article  PubMed  Google Scholar 

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034

Article  PubMed  PubMed Central  Google Scholar 

Grimes DR, Kannan P, Warren DR, Markelc B, Bates R, Muschel R, Partridge M (2016) Estimating oxygen distribution from vasculature in three-dimensional tumour tissue. J R Soc Interface 13:20160070

Article  Google Scholar 

Beasley NJ, Wykoff CC, Watson PH, Leek R, Turley H, Gatter K, Pastorek J, Cox GJ, Ratcliffe P, Harris AL (2001) Carbonic anhydrase IX, an endogenous hypoxia marker, expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis, and microvessel density. Cancer Res 61:5262–5267

CAS  PubMed  Google Scholar 

Waheed A, Sly WS (2017) Carbonic anhydrase XII functions in health and disease. Gene 623:33–40. https://doi.org/10.1016/j.gene.2017.04.027

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218:7–29. https://doi.org/10.1002/path.2518

Article  PubMed  Google Scholar 

Aplin AC, Zhu WH, Fogel E, Nicosia RF (2009) Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol 297:C471–C480. https://doi.org/10.1152/ajpcell.00019.2009

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18:68–80. https://doi.org/10.1017/S1431927611012402

CAS  Article  PubMed  Google Scholar 

Wang YL, Hui YN, Guo B, Ma JX (2007) Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye (Lond) 21:1501–1510. https://doi.org/10.1038/sj.eye.6702716

CAS  Article  Google Scholar 

Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523. https://doi.org/10.1161/01.RES.0000182903.16652.d7

CAS  Article  PubMed  Google Scholar 

Papapetropoulos A, García-Cardeña G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

CAS  PubMed  Google Scholar 

Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180. https://doi.org/10.1016/s0092-8674(00)81813-9

CAS  Article  PubMed  Google Scholar 

Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553. https://doi.org/10.1083/jcb.153.3.543

Article  PubMed  PubMed Central  Google Scholar 

Vazquez-Liebanas E, Nahar K, Bertuzzi G, Keller A, Betsholtz C, Mäe MA (2021) Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X211056395

Article  PubMed  PubMed Central  Google Scholar 

de Vries MR, Parma L, Peters HAB, Schepers A, Hamming JF, Jukema JW, Goumans MJTH, Guo L, Finn AV, Virmani R, Ozaki CK, Quax PHA (2019) Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J Intern Med 285:59–74. https://doi.org/10.1111/joim.12821

CAS  Article  PubMed 

留言 (0)

沒有登入
gif