Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome

Aisiku IP, Yamal JM, Doshi P, et al. The incidence of ARDS and associated mortality in severe TBI using the Berlin definition. J Trauma Acute Care Surg. 2016;80(2):308–12. https://doi.org/10.1097/TA.0000000000000903.

Article  PubMed  PubMed Central  Google Scholar 

Holland MC, Mackersie RC, Morabito D, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55(1):106–11. https://doi.org/10.1097/01.TA.0000071620.27375.BE.

Article  PubMed  Google Scholar 

Contant CF, Valadka AB, Gopinath SP, Hannay HJ, Robertson CS. Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001;95(4):560–8. https://doi.org/10.3171/jns.2001.95.4.0560.

CAS  Article  PubMed  Google Scholar 

Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury. Neurosurgery. 1997;40(4):707–712; discussion 712. https://doi.org/10.1097/00006123-199704000-00009.

Rincon F, Ghosh S, Dey S, et al. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery. 2012;71(4):795–803. https://doi.org/10.1227/NEU.0b013e3182672ae5.

Article  PubMed  Google Scholar 

Kahn JM, Caldwell EC, Deem S, Newell DW, Heckbert SR, Rubenfeld GD. Acute lung injury in patients with subarachnoid hemorrhage: incidence, risk factors, and outcome. Crit Care Med. 2006;34(1):196–202. https://doi.org/10.1097/01.ccm.0000194540.44020.8e.

Article  PubMed  Google Scholar 

Veeravagu A, Chen YR, Ludwig C, et al. Acute lung injury in patients with subarachnoid hemorrhage: a nationwide inpatient sample study. World Neurosurg. 2014;82(1–2):e235-241. https://doi.org/10.1016/j.wneu.2014.02.030.

Article  PubMed  Google Scholar 

Solenski NJ, Haley EC, Kassell NF, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med. 1995;23(6):1007–1017. https://doi.org/10.1097/00003246-199506000-00004.

Gruber A, Reinprecht A, Illievich UM, et al. Extracerebral organ dysfunction and neurologic outcome after aneurysmal subarachnoid hemorrhage. Crit Care Med. 1999;27(3):505–14. https://doi.org/10.1097/00003246-199903000-00026.

CAS  Article  PubMed  Google Scholar 

Elmer J, Hou P, Wilcox SR, et al. Acute respiratory distress syndrome after spontaneous intracerebral hemorrhage*. Crit Care Med. 2013;41(8):1992–2001. https://doi.org/10.1097/CCM.0b013e31828a3f4d.

Article  PubMed  PubMed Central  Google Scholar 

Rincon F, Maltenfort M, Dey S, et al. The prevalence and impact of mortality of the acute respiratory distress syndrome on admissions of patients with ischemic stroke in the United States. J Intensive Care Med. 2014;29(6):357–64. https://doi.org/10.1177/0885066613491919.

Article  PubMed  Google Scholar 

Zhao JN, Liu Y, Li HC. Aspiration-related acute respiratory distress syndrome in acute stroke patient. Plos One. 2015;10(3):e0118682. https://doi.org/10.1371/journal.pone.0118682.

Johnson NJ, Caldwell E, Carlbom DJ, et al. The acute respiratory distress syndrome after out-of-hospital cardiac arrest: incidence, risk factors, and outcomes. Resuscitation. 2019;135:37–44. https://doi.org/10.1016/j.resuscitation.2019.01.009.

Article  PubMed  Google Scholar 

Kim JS, Kim YJ, Kim M, et al. The impact of severity of acute respiratory distress syndrome following cardiac arrest on neurologic outcomes. Ther Hypothermia Temp Manag. 2021;11(2):96–102. https://doi.org/10.1089/ther.2019.0047.

Article  PubMed  Google Scholar 

Chou SHY, Beghi E, Helbok R, et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19—a report for the GCS-NeuroCOVID consortium and the ENERGY consortium. JAMA Netw Open. 2021;4(5): e2112131. https://doi.org/10.1001/jamanetworkopen.2021.12131.

Article  PubMed  PubMed Central  Google Scholar 

Siegler JE, Cardona P, Arenillas JF, et al. Cerebrovascular events and outcomes in hospitalized patients with COVID-19: the SVIN COVID-19 Multinational Registry. Int J Stroke. 2021;16(4):437–47. https://doi.org/10.1177/1747493020959216.

Article  PubMed  Google Scholar 

Qureshi AI, Baskett WI, Huang W, et al. Acute ischemic stroke and COVID-19. Stroke. 2021;52(3):905–12. https://doi.org/10.1161/STROKEAHA.120.031786.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leasure AC, Khan YM, Iyer R, et al. Intracerebral hemorrhage in patients with COVID-19. Stroke. 2021;52(7):e321–3. https://doi.org/10.1161/STROKEAHA.121.034215.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tejerina E, Pelosi P, Muriel A, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341–5. https://doi.org/10.1016/j.jcrc.2016.11.010.

Article  PubMed  Google Scholar 

Mrozek S, Constantin JM, Geeraerts T. Brain-lung crosstalk: implications for neurocritical care patients. World J Crit Care Med. 2015;4(3):163–78. https://doi.org/10.5492/wjccm.v4.i3.163.

Article  PubMed  PubMed Central  Google Scholar 

Ziaka M, Exadaktylos A. Brain–lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care. 2021;25(1):358. https://doi.org/10.1186/s13054-021-03778-0.

Article  PubMed  PubMed Central  Google Scholar 

Huang M, Gedansky A, Hassett CE, et al. Pathophysiology of brain injury and neurological outcome in acute respiratory distress syndrome: a scoping review of preclinical to clinical studies. Neurocrit Care. 2021;35(2):518–27. https://doi.org/10.1007/s12028-021-01309-x.

Article  PubMed  PubMed Central  Google Scholar 

Heesakkers H, van der Hoeven JG, Corsten S, et al. Clinical outcomes among patients with 1-year survival following intensive care unit treatment for COVID-19. JAMA. 2022;327(6):559–65. https://doi.org/10.1001/jama.2022.0040.

CAS  Article  PubMed  Google Scholar 

Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019;23(1):352. https://doi.org/10.1186/s13054-019-2626-z.

Article  PubMed  PubMed Central  Google Scholar 

Herridge MS, Moss M, Hough CL, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42(5):725–38. https://doi.org/10.1007/s00134-016-4321-8.

Article  PubMed  Google Scholar 

• Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome | NEJM. https://doi.org/10.1056/nejm200005043421801. (Accessed 18 Feb 2022). Ventilation with lower tidal volumes has been shown to decrease mortality and duration if mechanical ventilation in ARDS. 

• Prone positioning in severe acute respiratory distress syndrome | NEJM. https://doi.org/10.1056/nejmoa1214103. (Accessed 18 Feb 2022). Prone ventilation for 16 h/day has been shown to decrease mortality in moderate to severe ARDS.

Neuromuscular blockers in early acute respiratory distress syndrome | NEJM. https://doi.org/10.1056/nejmoa1005372. (Accessed 18 Feb 2022).

Early neuromuscular blockade in the acute respiratory distress syndrome | NEJM. https://doi.org/10.1056/nejmoa1901686. (Accessed 18 Feb 2022).

Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63. https://doi.org/10.1016/S0140-6736(09)61069-2.

Article  PubMed  Google Scholar 

Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75. https://doi.org/10.1056/NEJMoa1800385.

Article  PubMed  Google Scholar 

Rowat AM, Dennis MS, Wardlaw JM. Hypoxaemia in acute stroke is frequent and worsens outcome. Cerebrovasc Dis. 2006;21(3):166–72. https://doi.org/10.1159/000090528.

Article  PubMed  Google Scholar 

McHugh GS, Engel DC, Butcher I, et al. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):287–93. https://doi.org/10.1089/neu.2006.0031.

Article  PubMed  Google Scholar 

Davis DP, Meade W, Sise MJ, et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26(12):2217–23. https://doi.org/10.1089/neu.2009.0940.

Article  PubMed  Google Scholar 

Alali AS, Temkin N, Vavilala MS, et al. Matching early arterial oxygenation to long-term outcome in severe traumatic brain injury: target values. J Neurosurg. 2019;132(2):537–44. https://doi.org/10.3171/2018.10.JNS18964.

Article  PubMed  Google Scholar 

Moroney JT, Bagiella E, Desmond DW, Paik MC, Stern Y, Tatemichi TK. Cerebral hypoxia and ischemia in the pathogenesis of dementia after stroke. Ann N Y Acad Sci. 1997;826:433–6. https://doi.org/10.1111/j.1749-6632.1997.tb48498.x.

CAS  Article  PubMed  Google Scholar 

Helmerhorst HJF, Schultz MJ, van der Voort PHJ, de Jonge E, van Westerloo DJ. Bench-to-bedside review: the effects of hyperoxia during critical illness. Crit Care. 2015;19:284. https://doi.org/10.1186/s13054-015-0996-4.

Article  PubMed  PubMed Central  Google Scholar 

Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71. https://doi.org/10.1001/jama.2010.707.

CAS  Article  PubMed  Google Scholar 

Conservative oxygen therapy during mechanical ventilation in the ICU | NEJM. https://doi.org/10.1056/NEJMoa1903297. (Accessed 18 Feb 2022).

Lower or higher oxygenation targets for acute hypoxemic respiratory failure | NEJM. https://doi.org/10.1056/NEJMoa2032510. (Accessed 18 Feb 2022). 

Liberal or conservative oxygen therapy for acute respiratory distress syndrome | NEJM. https://doi.org/10.1056/NEJMoa1916431. (Accessed 18 Feb 2022).

• Robba C, Poole D, McNett M, et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397–2410. https://doi.org/10.1007/s00134-020-06283-0. The optimal oxygenation and ventilation targets and ventilator parameters in patients with acute brain injury are unknown, with limited evidence to guide clinical decisions. An expert panel reviewed the relevant existing literature, identified the need for future research, and provided recommendations based on the available evidence.

Kramer AH, Zygun DA. Anemia and red blood cell transfusion in neurocritical care. Crit Care. 2009;13(3):R89. https://doi.org/10.1186/cc7916.

Article  PubMed  PubMed Central  Google Scholar 

Kumar MA, Levine J, Faerber J, et al. The effects of red blood cell transfusion on functional outcome after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2017;108:807–16. https://doi.org/10.1016/j.wneu.2017.09.038.

Article  PubMed  Google Scholar 

Leal-Noval SR, Múñoz-Gómez M, Murillo-Cabezas F. Optimal hemoglobin concentration in patients with subarachnoid hemorrhage, acute ischemic stroke and traumatic brain injury. Curr Opin Crit Care. 2008;14(2):156–62. https://doi.org/10.1097/MCC.0b013e3282f57577.

Article  PubMed  Google Scholar 

Ayling OGS, Ibrahim GM, Alotaibi NM, Gooderham PA, Macdonald RL. Anemia after aneurysmal subarachnoid hemorrhage is associated with poor outcome and death. Stroke. 2018;49(8):1859–65. https://doi.org/10.1161/STROKEAHA.117.020260.

Article 

留言 (0)

沒有登入
gif