DNA methylation trajectories and accelerated epigenetic aging in incident type 2 diabetes

Saeedi P, Petersohn I, Salpea P, et al Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice. 2019;157. https://doi.org/10.1016/j.diabres.2019.107843

Willemsen G, Ward KJ, Bell CG, et al. The concordance and heritability of type 2 diabetes in 34,166 twin pairs from International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium. Twin Res Hum Genet. 2015;18(6):762–71. https://doi.org/10.1017/thg.2015.83.

Article  PubMed  Google Scholar 

Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13. https://doi.org/10.1038/s41588-018-0241-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xue A, Wu Y, Zhu Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9(1):2941. https://doi.org/10.1038/s41467-018-04951-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gill JMR, Cooper AR. Physical activity and prevention of type 2 diabetes mellitus. Sports Med. 2008;38(10):807–24. https://doi.org/10.2165/00007256-200838100-00002.

Article  PubMed  Google Scholar 

Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341: c4229. https://doi.org/10.1136/bmj.c4229.

Article  PubMed  PubMed Central  Google Scholar 

Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type diabetes. Diabetes Care. 2013;36(5):1413–21. https://doi.org/10.2337/dc12-2211.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu L, Li Y, Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol. 2008;10(1–2):25–36.

CAS  PubMed  Google Scholar 

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

CAS  Article  Google Scholar 

Jin Z, Liu Y. DNA methylation in human diseases. Genes and Diseases. 2018;5:1–8.

CAS  Article  Google Scholar 

Cardona A, Day FR, Perry JRB, et al Epigenome-wide association study of incident type 2 diabetes in a British population: EPIC-Norfolk study. Diabetes db180290. 2019;

Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6. https://doi.org/10.1038/nature20784.

CAS  Article  PubMed  Google Scholar 

2. Classification and diagnosis of diabetes: <em>Standards of Medical Care in Diabetes—2019</em> Diabetes Care 42(Supplement 1) 2019;S13 LP-S28. https://doi.org/10.2337/dc19-S002

Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP. Heterogeneity in healthy aging. The Journals of Gerontology: Series A. 2013;69(6):640–9. https://doi.org/10.1093/gerona/glt162.

Article  Google Scholar 

Jylhävä J, Pedersen NL, Hägg S. Biological age predictors EBioMedicine. 2017;21:29–36.

Article  Google Scholar 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115.

Article  PubMed  PubMed Central  Google Scholar 

Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11(2):303–27. https://doi.org/10.18632/aging.101684.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67. https://doi.org/10.1016/j.molcel.2012.10.016.

CAS  Article  PubMed  Google Scholar 

Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573–91. https://doi.org/10.18632/aging.101414.

Article  PubMed  PubMed Central  Google Scholar 

Hillary RF, Stevenson AJ, McCartney DL, et al. Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clin Epigenetics. 2020;12(1):115. https://doi.org/10.1186/s13148-020-00905-6.

Article  PubMed  PubMed Central  Google Scholar 

Grant CD, Jafari N, Hou L, et al. A longitudinal study of DNA methylation as a potential mediator of age-related diabetes risk. Geroscience. 2017;39(5–6):475–89. https://doi.org/10.1007/s11357-017-0001-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Walaszczyk E, Luijten M, Spijkerman AMW, et al. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: a systematic review and replication in a case–control sample of the Lifelines study. Diabetologia. 2018;61(2):354–68. https://doi.org/10.1007/s00125-017-4497-7.

CAS  Article  PubMed  Google Scholar 

Fraszczyk E, Spijkerman AMW, Zhang Y, et al. Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts. Diabetologia. 2022;65(5):763–76. https://doi.org/10.1007/s00125-022-05652-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Verschuren W, Blokstra A, Picavet H, Smit H. Cohort profile: the Doetinchem Cohort Study. Int J Epidemiol. 2008;37(6):1236–41. https://doi.org/10.1093/ije/dym292.

CAS  Article  PubMed  Google Scholar 

Picavet HSJ, Blokstra A, Spijkerman AMW, Verschuren WMM. Cohort profile update: the Doetinchem Cohort Study 1987–2017: lifestyle, health and chronic diseases in a life course and ageing perspective. Int J Epidemiol. 2017;46(6):1751–1751g. https://doi.org/10.1093/ije/dyx103.

CAS  Article  PubMed  PubMed Central  Google Scholar 

WHO Classification of diabetes mellitus. https://apps.who.int/iris/handle/10665/325182

Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.

CAS  Article  Google Scholar 

Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. https://doi.org/10.1093/bioinformatics/btu049.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47. https://doi.org/10.1093/nar/gkv007.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.

Article  PubMed  Google Scholar 

Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86. https://doi.org/10.1186/1471-2105-13-86.

Article  PubMed  PubMed Central  Google Scholar 

Sharp GC, Arathimos R, Reese SE, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27–42. https://doi.org/10.2217/epi-2017-0095.

CAS  Article  PubMed  Google Scholar 

DNA methylation age and the epigenetic clock. http://labs.genetics.ucla.edu/horvath/htdocs/dnamage/

Kulkarni H, Kos MZ, Neary J, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet. 2015;24(18):5330–44. https://doi.org/10.1093/hmg/ddv232.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3(7):526–34. https://doi.org/10.1016/S2213-8587(15)00127-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Al Muftah WA, Al-Shafai M, Zaghlool SB, et al. Epigenetic associations of type 2 diabetes and BMI in an Arab population. Clin Epigenetics. 2016;8:13. https://doi.org/10.1186/s13148-016-0177-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pinheiro JC, Bates DJ, DebRoy S, Sakar D The Nlme package: linear and nonlinear mixed effects models, R Version. 2012;3

Li M, Zou D, Li Z, et al. EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res. 2019;47(D1):D983–8. https://doi.org/10.1093/nar/gky1027.

CAS  Article  PubMed  Google Scholar 

Kriebel J, Herder C, Rathmann W, et al. Association between DNA methylation in whole blood and measures of glucose metabolism: KORA F4 study. PLoS ONE. 2016;11(3): e0152314. https://doi.org/10.1371/journal.pone.0152314.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E, et al. Epigenome-wide association study identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum Mol Genet. 2016;25(3):609–19. https://doi.org/10.1093/hmg/ddv493.

CAS  Article  PubMed  Google Scholar 

Florath I, Butterbach K, Heiss J, et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia. 2016;59(1):130–8. https://doi.org/10.1007/s00125-015-3773-7.

CAS  Article  PubMed  Google Scholar 

Duran J, Obach M, Navarro-Sabate A, et al. Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals. The FEBS Journal. 2009;276(16):4555–68. https:/

留言 (0)

沒有登入
gif