Towards defining the core Saccharum microbiome: input from five genotypes

Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40. https://doi.org/10.1038/nrmicro2910.

CAS  Article  PubMed  Google Scholar 

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99. https://doi.org/10.1038/nrmicro3109.

CAS  Article  PubMed  Google Scholar 

Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56. https://doi.org/10.1038/s41575-018-0061-2.

CAS  Article  PubMed  Google Scholar 

Mercado-Blanco J, Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek. 2007;92:367–89. https://doi.org/10.1007/s10482-007-9167-1.

Article  PubMed  Google Scholar 

Blanco Y, Legaz M-E, Vicente C. Gluconacetobacter diazotrophicus, a sugarcane endophyte, inhibits xanthan production by sugarcane-invading Xanthomonas albilineans. J Plant Interact. 2010;5:241–8. https://doi.org/10.1080/17429141003753273.

CAS  Article  Google Scholar 

Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol. 2011;77:3202–10. https://doi.org/10.1128/AEM.00133-11.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Piñón D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, et al. Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol. 2002;153:345–51. https://doi.org/10.1016/S0923-2508(02)01336-0.

Article  PubMed  Google Scholar 

Hussain SS, Mehnaz S, Siddique KHM. Harnessing the plant microbiome for improved abiotic stress tolerance. Singapore: Springer; 2018. p. 21–43. https://doi.org/10.1007/978-981-10-5514-0_2.

Book  Google Scholar 

Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, et al. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. Plos One. 2014;9:e114744. https://doi.org/10.1371/journal.pone.0114744.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008;147:446–55. https://doi.org/10.1104/pp.108.118828.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bell TH, Joly S, Pitre FE, Yergeau E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014;32:271–80. https://doi.org/10.1016/J.TIBTECH.2014.02.008.

CAS  Article  PubMed  Google Scholar 

Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 2009;321:305–39. https://doi.org/10.1007/s11104-009-9895-2.

CAS  Article  Google Scholar 

Hunter PJ, Teakle GR, Bending GD. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. Front Plant Sci. 2014;5:27. https://doi.org/10.3389/fpls.2014.00027.20.

Article  PubMed  PubMed Central  Google Scholar 

Ali B, Sabri AN, Ljung K, Hasnain S. Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol. 2009;48:542–7. https://doi.org/10.1111/j.1472-765X.2009.02565.x.

CAS  Article  PubMed  Google Scholar 

Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci. 2014;26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001.

Article  Google Scholar 

Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56. https://doi.org/10.1146/annurev.micro.62.081307.162918.

CAS  Article  PubMed  Google Scholar 

Seabra JEA, Macedo IC. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy. 2011;39:421–8. https://doi.org/10.1016/J.ENPOL.2010.10.019.

CAS  Article  Google Scholar 

Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57. https://doi.org/10.1038/s41477-018-0139-4.

Article  PubMed  Google Scholar 

Abbott KC, Eppinga MB, Umbanhowar J, Baudena M, Bever JD. Microbiome influence on host community dynamics: conceptual integration of microbiome feedback with classical host–microbe theory. Ecol Lett. 2021;24:2796–811.

Article  Google Scholar 

Hanbing L, Kezhi B, Yuxi H, Tingyun Kuang JL. Differences between the number and structure of chloroplasts in leaves and in non-leaf organs of wheat. Belgian J Bot. 2001;134:121–6.

Google Scholar 

Shearman JR, Sonthirod C, Naktang C, Pootakham W, Yoocha T, Sangsrakru D, et al. The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads. Sci Rep. 2016;6:31533. https://doi.org/10.1038/srep31533.

CAS  Article  PubMed  PubMed Central  Google Scholar 

de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774. https://doi.org/10.1038/srep28774.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Logan DC. Plant mitochondria. Hoboken: John Wiley & Sons, Inc.; 2007. https://doi.org/10.1002/9780470986592.

Book  Google Scholar 

Boffey SA, Leech RM. Chloroplast DNA levels and the control of chloroplast division in light-grown wheat leaves. Plant Physiol. 1982;69:1387–91. https://doi.org/10.1104/pp.69.6.1387.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leite DCC, Grandis A, Tavares EQP, Piovezani AR, Pattathil S, Avci U, et al. Cell wall changes during the formation of aerenchyma in sugarcane roots. Ann Bot. 2017;120:693–708. https://doi.org/10.1093/aob/mcx050.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high- resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dong M, Yang Z, Cheng G, Peng L, Xu Q, Xu J. Diversity of the bacterial microbiome in the roots of four saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Front Microbiol. 2018;9:267. https://doi.org/10.3389/fmicb.2018.00267.

Article  PubMed  PubMed Central  Google Scholar 

Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol. 2013;4:1111–9. https://doi.org/10.1111/2041-210X.12114.

Article  PubMed Central  Google Scholar 

Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–79. https://doi.org/10.1038/ismej.2014.195.

CAS  Article  PubMed  Google Scholar 

Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational 21 taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.

Article  PubMed  PubMed Central  Google Scholar 

Edgar RC, Flyvbjerg H. Octave plots for visualizing diversity of microbial OTUs. https://doi.org/10.1101/389833.

Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:1–15. https://doi.org/10.1038/ncomms12151.

CAS  Article  Google Scholar 

Eyre AW, Wang M, Oh Y, Dean RA. Identification and characterization of the Core Rice seed microbiome. Phytobiomes J. 2019;3:148–57.

Article  Google Scholar 

Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). Plos One. 2013;8:e53987.

Article  Google Scholar 

Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:1–19.

Article  Google Scholar 

Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A. 2013;110:6548–53.

CAS  Article  Google Scholar 

Quecine MC, Silva TM, Carvalho G, Saito S, Mondin M, Teixeira-Silva NS, et al. A stable Leifsonia xyli subsp. xyli GFP-tagged strain reveals a new colonization niche in sugarcane tissues. Plant Pathol. 2016;65:154–62. https://doi.org/10.1111/ppa.12397.

CAS  Article  Google Scholar 

Mills L, Leaman TM, Taghavi SM, Shackel L, Dominiak BC, Taylor PWJ, et al. Leifsonia xyli- like bacteria are endophytes of grasses in eastern Australia. Australas Plant Pathol. 2001;30:145–51. https://doi.org/10.1071/AP01003.

Article  Google Scholar 

Battu L, Ulaganathan K. Whole genome sequencing and identification of host-interactive genes in the rice endophytic Leifsonia sp. ku-ls. Funct Integr Genomics. 2020;20:237–43. https://doi.org/10.1007/s10142-019-00713-z.

CAS  Article  PubMed  Google Scholar 

Li T-Y, Zeng H-L, Ping Y, Lin H, Fan X-L, Guo Z-G, et al. Construction of a stable expression vector for Leifsonia xyli subsp. cynodontis and its application in studying the effect of the bacterium as an endophytic bacterium in rice. FEMS Microbiol Lett. 2007;267:176–83. https://doi.org/10.1111/j.1574-6968.2006.00551.x.

CAS 

留言 (0)

沒有登入
gif