Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis

Sanders, F.W.B., and J.L. Griffin. 2016. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological reviews of the Cambridge Philosophical Society 91: 452–468.

PubMed  Article  Google Scholar 

Lim, J.S., M. Mietus-Snyder, A. Valente, J.M. Schwarz, and R.H. Lustig. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology & Hepatology 7: 251–264.

Article  CAS  Google Scholar 

Sanyal, A.J. 2019. Past, present and future perspectives in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology & Hepatology 16: 377–386.

Article  Google Scholar 

Hu, Y., I. Semova, X. Sun, H. Kang, S. Chahar, A.N. Hollenberg, D. Masson, M.D. Hirschey, J. Miao, and S.B. Biddinger. 2018. Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. Journal of Biological Chemistry 293: 2006–2014.

PubMed  Article  CAS  Google Scholar 

Arrese, M., D. Cabrera, A.M. Kalergis, and A.E. Feldstein. 2016. Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences 61: 1294–1303.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidant & Redox Signalling 22: 848–870.

Article  CAS  Google Scholar 

Wan, X., C. Xu, C. Yu, and Y. Li. 2016. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Canadian Journal of Gastroenterology and Hepatology 2016: 6489012.

PubMed  PubMed Central  Article  Google Scholar 

Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences 20: 3328.

PubMed Central  Article  CAS  Google Scholar 

Sharma, M., and E.D. Alba. 2021. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. International Journal of Molecular Sciences 22: 872.

PubMed Central  Article  CAS  Google Scholar 

Yu, X., L.P. Ren, C. Wang, Y.J. Zhu, H.Y. Xing, J. Zhao, and G.Y. Song. 2018. Role of X-box binding protein-1 in fructose-induced de novo lipogenesis in HepG2 cells. Chinese Medical Journal (Engl). 131: 2310–2319.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Malhi, H., and R.J. Kaufman. 2011. Endoplasmic reticulum stress in liver disease. Journal of Hepatology 54: 795–809.

PubMed  Article  CAS  Google Scholar 

Takaki, A., D. Kawai, and K. Yamamoto. 2013. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences 14: 20704–20728.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Minutoli, L., D. Puzzolo, M. Rinaldi, N. Irrera, H. Marini, V. Arcoraci, A. Bitto, G. Crea, A. Pisani, F. Squadrito, V. Trichilo, D. Bruschetta, A. Micali, and D. Altavilla. 2016. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity 2016: 2183026.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Bauernfeind, F., E. Bartok, A. Rieger, L. Franchi, G. Nunez, and V. Hornung. 2011. Cutting edge: Reactive oxygen species inhibitors block priming, but not activation, of the nlrp3 inflammasome. Journal of Immunology 187: 613–617.

Article  CAS  Google Scholar 

Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K+ efflux is the common trigger of nlrp3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zhou, Y., Z. Tong, S. Jiang, W. Zheng, J. Zhao, and X. Zhou. 2020. The roles of endoplasmic reticulum in NLRP3 inflammasome activation. Cells 9: 1219.

PubMed Central  Article  CAS  Google Scholar 

Buchanan, B.W., A.B. Mehrtash, C.L. Broshar, A.M. Runnebohm, B.J. Snow, L.N. Scanameo, M. Hochstrasser, and E.M. Rubenstein. 2019. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. Journal of Biological Chemistry 294: 19814–19830.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kim, S., Y. Joe, S.O. Jeong, M. Zheng, S.H. Back, S.W. Park, S.W. Ryter, and H.T. Chung. 2014. Endoplasmic reticulum stress is sufficient for the induction of IL-1b production via activation of the NF-jB and inflammasome pathways. Innate Immunity 20: 799–815. https://doi.org/10.1177/1753425913508593.

Article  PubMed  CAS  Google Scholar 

Bronner, D.N., B.H. Abuaita, X. Chen, K.A. Fitzgerald, G. Nuñez, Y. He, X.M. Yin, and M.X.D. O’Riordan. 2015. Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage. Immunity 43: 451–462.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Collino, M., E. Benetti, M. Rogazzo, R. Mastrocola, M.M. Yaqoob, M. Aragno, et al. 2013. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation. Biochemical Pharmacology 85: 257–264.

PubMed  Article  CAS  Google Scholar 

Gupta, A.P., P. Singh, R. Garg, G.R. Valicherla, M. Riyazuddin, A.A. Syed, Z. Hossain, and J.R. Gayen. 2019. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy 116: 108959.

Article  CAS  Google Scholar 

Verma, D.K., S. Gupta, J. Biswas, N. Joshi, A. Singh, P. Gupta, S. Tiwari, K.S. Raju, S. Chaturvedi, M. Wahajuddin, and S. Singh. 2018. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. BBA Molecular Basis of Disease 1864: 2078–2096.

PubMed  Article  CAS  Google Scholar 

Bagul, P.K., H. Middela, S. Matapally, R. Padiya, T. Bastia, K. Madhusudana, B.R. Reddy, S. Chakravarty, and S.K. Banerjee. 2012. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacological Research 66: 260–268.

PubMed  Article  CAS  Google Scholar 

Ding, X.Q., W.Y. Wu, R.Q. Jiao, T.T. Gu, Q. Xu, Y. Pan, and L.D. Kong. 2018. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacological Research. 137: 64–75.

PubMed  Article  CAS  Google Scholar 

Le, K.A., and L. Tappy. 2006. Metabolic effects of fructose. Current Opinion in Clinical Nutrition and Metabolic Care 9: 469–475.

PubMed  Article  CAS  Google Scholar 

Jaiswal, N., C.K. Maurya, J. Pandey, A.K. Rai, and A.K. Tamrakar. 2015. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radical Research 49: 1055–1068.

PubMed  Article  CAS  Google Scholar 

Hetz, C. 2012. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 13: 89–102.

PubMed  Article  CAS  Google Scholar 

Lu, J., and A. Holmgren. 2013. The thioredoxin antioxidant system. Free Radical Biology and Medicine 66: 75–87.

PubMed  Article  CAS  Google Scholar 

Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology. 11: 136–140.

PubMed  Article  CAS  Google Scholar 

Zahid, A., B. Li, A.J.K. Kombe, T. Jin, and J. Tao. 2019. Pharmacological inhibitors of the NLRP3 inflammasome. Frontiers in Immunology 10: 2538.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.

PubMed  Article  CAS  Google Scholar 

Harijith, A., D.L. Ebenezer, and V. Natarajan. 2014. Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in Physiology 5: 352.

PubMed  PubMed Central  Article  Google Scholar 

Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

PubMed  Article  CAS  Google Scholar 

Todoric, J., G. Di Caro, S. Reibe, D.C. Henstridge, C.R. Green, A. Vrbanac, F. Ceteci, C. Conche, R. McNulty, S. Shalapour, K. Taniguchi, P.J. Meikle, J.D. Watrous, R. Moranchel, et al. 2020. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism 2: 1034–1045.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Nomura, K., and T. Yamanouchi. 2012. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. Journal of Nutritional Biochemistry 23: 203–208.

PubMed  Article  CAS  Google Scholar 

Choe, J.Y., and S.K. Kim. 2017. Quercetin and ascorbic acid suppress fructose-induced NLRP inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation 40: 980–994.

PubMed  Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif