Factors associated with elevated blood lactate levels in patients undergoing maintenance hemodialysis

Mizock BFALKLJ. Lactic acidosis in critical illness. Crit Care Med. 1992;20:80–93.

CAS  Article  Google Scholar 

Jean-Sebastien R, Lawrence SW, Christopher BM. Treatment of lactic acidosis: appropriate confusion. J Hosp Med. 2010;5:E1-7.

Article  Google Scholar 

Hourmozdi Justin J, Gill Jasreen, Miller Joseph B, Markin Abraham, Adams Beth, Soi Vivek, Jaehne Anja K, Taylor Andrew R, Langberg Sam, Rodriguez Lauren, et al. Change in Lactate Levels After Hemodialysis in Patients With End-Stage Renal Disease. Annals Emergency Med. 2017;71:737–42.

Article  Google Scholar 

Cohen Robert D, Woods H Frank, Krebs Hans Adolf. Clinical and Biochemical Aspects of Lactic Acidosis. Oxford, UK Blackwell Scientific. 1976;70:1294–5.

Google Scholar 

Lars WA, Julie M, Jonathan CR, Berg Katherine M, Michael NC, Michael WD. Etiology and therapeutic approach to elevated lactate. Mayo Clin Proc. 2013;88:1127.

Article  Google Scholar 

Suetrong Bandarn, Walley Keith R. Lactic acidosis sepsis: it’s not all anaerobic implications for diagnosis and management. Chest. 2016;149:252–61.

Article  Google Scholar 

Hirooka Y, Imaizumi T, Harada S, et al. Endothelium Dependent forearm vasodilation to acetylcholine but not to substance P is impaired in patients with heart failure. J Cardiovasc Pharmacol. 1992;20:221–5.

Article  Google Scholar 

Guidelines for Treatment of Chronic Heart Failure (JCS 2010) 14

Umit V, Yelda V, Mustafa Y, Atilla U, Mustafa C. Association between hyperlactatemia and occult cardiac failure in diabetic patients on maintenance hemodialysis. Int Urol Nephrol. 2014;46:1639–44.

Article  Google Scholar 

Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.

CAS  Article  Google Scholar 

Ole K, Niels G, Charlotte B. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospital: a systematic review. Scandinavian J trauma, Resuscitation, Emerg Med. 2011;19:74–8.

Article  Google Scholar 

Yamada K, Furuya R, Takita T, Maruyama Y, Yamaguchi Y, Ohkawa S, Kumagai H. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am J Clin Nutr. 2008;87:106–13.

CAS  Article  Google Scholar 

Barth J, Kenneth J, Freedman D. Harmonisation of Reference Intervals Pathology Harmony Group. Clinical Biochemistry Outcomes

Chad MC, Ross TM, Krista LG, Seth P, Niaman N. Age-adjusted and expanded lactate thresholds as predictors of all-cause mortality in the emergency department. Western Journal of Emergency Medicine. 2022;21:1249–57.

Google Scholar 

Devadoss JS, Kamala P, Sundararaj Alena N, Lopes-Virella Maria F, Huang Yan. Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation. J Immunol. 2009;182:2476–84.

Article  Google Scholar 

Tamara T, Yi Z, Van Jan D, Judith C, James LK. Cellular senescence, and the senescent secretory phenotype-therapeutic opportunities. J Clin Invest. 2013;123:966–72.

Article  Google Scholar 

Sarah EG, Melanie H, Martin RB, Murray CHC. Senescent vascular smooth muscle cells drive inflammation through an interleukin-1α-dependent senescence-associated secretory phenotype. Arterioscler Thromb Vasc Biol. 2015;35:1963–74.

Article  Google Scholar 

Peter S, Olof H, Furcy P, Ulf D, Tao W, Lars B, Tomas J. A Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55:1899–911.

Article  Google Scholar 

Kalantar ZK, Kopple JD, Block G, Humphreys MH. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2001;38:1251–63.

Article  Google Scholar 

Gutierrez A, Alvestrand A, Wahren Bergström J. Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int. 1990;38:487–94.

CAS  Article  Google Scholar 

Furuta Minoru, Kuragano Takahiro, Kida Aritoshi, Kitamura Rie, Nanami Masayoshi, Otaki Yoshinaga, Nonoguchi Hiroshi, Matsumoto Akihide, Nakanishi Takeshi. A Crossover study of the acrylonitrile-co-methallyl sulfonate and polysulfone membranes for elderly hemodialysis patients. The effect on hemodynamic, nutritional, and inflammatory condition. ASAIO Journal. 2011;57:293–9.

CAS  Article  Google Scholar 

Juan FN, Robert M, Jose LT, Rafael M, del R. Effect of different membranes on amino-acid losses during hemodialysis. Nephrol Dial Transplant. 1998;13:113–7.

Article  Google Scholar 

Sanaka T. Reactive oxygen hypothesis. J Japan Dialysis Therapy. 1991;24:283–7 (in Japanese).

Article  Google Scholar 

Tetta C, Biasioli S, Schiavon R, Inguaggiato P, David S, Panichi V, Wratten ML. An overview of hemodialysis and oxidant stress. Blood Purif. 1999;17:118–25.

CAS  Article  Google Scholar 

Sato M, Morita H, Ema H, Yamaguchi S, Amano I. Effect of different dialyzer membranes on cutaneous microcirculation during hemodialysis. Clin Nephro. 2006;66:426–32.

CAS  Article  Google Scholar 

Zhi-Juan D, Hai-Lin Z, Li-Xia Y. Effects of intradialytic resistance exercise on systemic inflammation in maintenance hemodialysis patients with sarcopenia: a randomized controlled trial. Int Urol Nephrol. 2019;51:1415–24.

Article  Google Scholar 

Wong Jonathan, Davis Philip, Patidar Ashish, Zhang Yonglong, Vilar Enric, Finkelman Malcolm, Farrington Ken. The Effect of Intra-Dialytic Exercise on Inflammation and Blood Endotoxin Levels. Blood Purification. 2017;44:51–9.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif